Ирина Петровна Никитина

Философия науки. Учебное пособие


Скачать книгу

этого нет, нет и противоречия. Те примеры, которые обычно противопоставляют закону противоречия, не являются подлинными противоречиями и не имеют к нему никакого отношения.

      Противоречие недопустимо в строгом, в частности в научном, рассуждении, когда оно смешивает истину с ложью. Но очевидно, что в обычной речи у противоречия много разных задач. Оно может выступать в качестве основы сюжета какого-либо рассказа, быть средством достижения особой художественной выразительности и т. д. Реальное мышление – и тем более художественное – не сводится к одной логичности. В нем важно все: и ясность, и неясность; и доказательность, и зыбкость; и точное определение, и чувственный образ. В нем может оказаться нужным и противоречие, если оно к месту.

      Настаивая на исключении логических противоречий, не следует, однако, всякий раз «поверять алгеброй гармонию» и пытаться втиснуть все многообразие противоречий в прокрустово ложе логики.

      Логические противоречия недопустимы в науке, но установить, что конкретная теория не содержит их, непросто. То, что в процессе развития и развертывания теории не встречено никаких противоречий, еще не означает, что их в самом деле нет. Научная теория – очень сложная система утверждений. Не всегда противоречие удается обнаружить относительно быстро путем последовательного выведения следствий из ее положений.

      Вопрос о непротиворечивости становится яснее, когда теория допускает аксиоматическую формулировку, подобно геометрии Евклида или механике Ньютона. Для большинства аксиоматизированных теорий непротиворечивость доказывается без особого труда. Есть, однако, теория, в случае которой десятилетия упорнейших усилий не дали ответа на вопрос, является она непротиворечивой или нет. Это математическая теория множеств, лежащая в основе всей математики.

      Доказательство

      Невозможно переоценить значение доказательств в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. Иногда за доказательство выдается то, что им вовсе не является. К доказательствам прибегают часто, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т. п.

      Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем – чаще всего незаметно для себя – общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т. д.

      Особую роль при этом играет изучение математики. С незапамятных времен математические рассуждения считаются общепризнанным эталоном доказательности. Желая похвалить чью-либо аргументацию, мы называем ее математически строгой и безупречной.

      Изучение