Вячеслав Савельевич Буланов

Основы социально-экономической теории развития человека. Монография


Скачать книгу

продукта (ВНП), либо как увеличение на душу населения. Экономический рост дает возможность улучшить благосостояние людей, повысить их уровень жизни, т. е. способствует развитию человека. Поэтому он желателен, а в отдельные периоды (эпидемии, войны и т. д.) крайне необходим и является одной из основных целей макроэкономической политики государства.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAgEBLAEsAAD/4RP3RXhpZgAATU0AKgAAAAgACAESAAMAAAABAAEAAAEaAAUAAAABAAAAbgEbAAUAAAABAAAAdgEoAAMAAAABAAIAAAExAAIAAAAcAAAAfgEyAAIAAAAUAAAAmgE7AAIAAAAPAAAArodpAAQAAAABAAAAwAAAAOwALcbAAAAnEAAtxsAAACcQQWRvYmUgUGhvdG9zaG9wIENTMyBXaW5kb3dzADIwMTQ6MDc6MjAgMTY6NTY6NTkAPEMyRTBGNUYyRThFRD4AAAAAAAOgAQADAAAAAQABAACgAgAEAAAAAQAAAligAwAEAAAAAQAAAyAAAAAAAAAABgEDAAMAAAABAAYAAAEaAAUAAAABAAABOgEbAAUAAAABAAABQgEoAAMAAAABAAIAAAIBAAQAAAABAAABSgICAAQAAAABAAASpQAAAAAAAABIAAAAAQAAAEgAAAAB/9j/4AAQSkZJRgABAgAASABIAAD/7QAMQWRvYmVfQ00AAf/uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAKAAeAMBIgACEQEDEQH/3QAEAAj/xAE/AAABBQEBAQEBAQAAAAAAAAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggFAwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNUZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/APSUkkklKSSSSUpJQfdTW5jLHtY60xW1xguOghv+exN69Pq+hvb6sT6ffUbh/V9rUlJElGt7LQ41uDwxxY4jgOadr2T+8x30lPa7wSUsklBieySSlJJJJKUksrqnXT07MbjuxvVqNTLTfvLY3OfUWbfTf9DYz6H7/wCZ6avYWScvCx8stDPtFTbdrXbwNw3DbZtr3t/lbElJ0kkklP8A/9D0lJJJJSkkkklIMjDoyX1PtDt1B3VlpiCSx/gfz6a/o/8AnuyxSGO1tr7WPew2lrrWtI2uc1oqa97S13u9NjGexFSSU0ndJw3Pc87/ANI577Gh0B3qGx7mafmerd637/qMo/SfoK0v2PgTO14HAAe5oHlur2P7/Re/2f4P2K1bZ6VVlu0v9Njn7By7aC/YP621c1Zbms+qLfrIMuw9SGK3qJJe/wBA7gLXYH2L1Ps/2X0XfZfoet/2o9X7T+kToxvrWvCPMoJd6jpmJj3jIqDxYGGuS727TH+DaGs/N/7/APzv6RWlQx+pZGXkubi4vqYteQ7Fuu9QB7HMZutt9F7R6lFORtxH/pfX3/pfT9JUMT62UZFfT3vqZV9uGS68C0vOO3FD3ve5ramuu9RtX/A7P+ER9uZ2G3/o3/cq4h3d5JYbvrMWUU32YoY3Nw7c3AHqEl4qrblOxsn9F+r3ux7GWbq/tFX89X/gv0zM+tG/FsyG47D6T8JrouJaBnmtrJd6Pqeri+sx9tfpbLK/5u71f0VS9qfb+Xyq4h3dPK6X03Ms9XLxash+1rN1jd3tYXOYOfzXWPViuuuqplNTQyqpoZWxuga1o2sY3+q1Uq+r1X9UrwccMuotxrMluUx8iarW4llHptbt3Nsf7/0v6P8Am/SV9NII36ptSSSSCn//0fSUkkklIbLxW5wd6TQ1u877Qwhs7fUc1zPYzd7VPdfMemyfD1f/AFEsrqTqsfJtsNV07qcgWVuYGC5wfjV3H1mP9PZTi+k/1f1f30fovXu3qlZX0hsUvptbjj9CKLbWsY0uDMf9ddrbjstYzdUx9ttebT6n6P0v0aSdO35u+byNwPpDYQHzcBtLvob/ANH7dynuv/0bP+3Pl/olgF3SiC44ec5hY8NqLB/hGvvfSyYe9+7K377LPRx7X/z1fp2enLJHSMe81voyLiGDIFYsJcBe92cW0UN2u9P1sD9Yf+Z/n+mladh+LtjIds9YCr02mDYLhtBB2xv9PZ9JZb+hYTK24j2hvTxc21nTXXtGP6m71K6/T9AXOp+0NdbXg+t9l9T/ALT7K/TVYX9Mrxba/Rstda17HWsfW87ahXi/onbG1fZbKa2Mbk+l/g/9KnYzpbh6WLh5TW2kbw4w2Mn7Jj3V77m2u/msrG9b0v5qvGt9K71/W9YiRGxpWnYfi3f2VTR1F+e1zqftFjbLMYZO3HfkR6deUaPS92S7Z+96VttXreh69XqKOP0CnGZ0+trXOZ003eg2y4ODvXD23NvBx/0rdj7FUrb0q62plWHmVjKPoveRA9O3W3eLPUcymx+T6Xr7afofq1v+nbIxOjsuOPZhZQNzyy0uftY4O9ar+cc7Zd6n2jJzK6v8M/KyrPp+rWjxy7n+XpRUf3R+LZb0DErobjkF1baLMLDD8gONNN4/SY+I51G9znVVsqrfd9ov9Gr06/8ACJDo2MaXAWFxacdnr/aGFzW4LvtOJR/R/Sa2i5r77P0fq2f4Z/pqu49JtyK7HYdtb7HNcGlwIcLPs1u2ip27c/3033U0elZR6Vz/AFP9KKu7pltVNhxctxGM6tplm4U1l19ePSwbWZTq30VWP+nd/MV3+p6t9SXHLuVafuj8W/hdLxcXPblUS/Itrtc4m3c2z17G5F2Q97Mf0vUsspr2em9n6KrZVV6S1N1/+jb/ANuH/wBJLHw/2cepUuZTb9peXOD7H+4PdXfkXWvxva1jX/aLaLrqmf02v7J/2nW2gSTubVp2H4sN1/8Ao2/9uH/0kkppIJsdh+L/AP/S9JSSSSUoEjgwk73bd3u2nc2dYPG5v7rtUkklLPuayN79u4wJPJQxkYsusbbXJA3vDmzAPs3uH8r6O5Pc21wAr7yD7tvI/qv3IIx8qDqdZH86eJmfbQiAFJzl0jm9ojn3j+9I5NOk3M14lw1/FB+z5I3bZOuh9QgnzdFKkzHuP8457IDY2P3aj6R91bfpI0EJPtVPHrN8/cP70hlUDQXM+AeP71FuNEw+w7jPLdPhDEvsx5NtpPiSP/IIaJ1ZfaqYn1mQe+8Qdfj+8nbkMe7ay1rnHWA4E/lUTjToX2R4SI+P0PpJvs4Bn1LA7x3AH4fQS0UmLnEQSSPCUyg2vaZ9Sx3k50j8imgpSSSSSn//0/SUkkklKSSSSUjuZvDRLWmTG6e4/N2uagjFfM72T8bT/wBL1kW9he0N2eoJ1bDT29p/S/uuVb7M8wTT2gyyiSP3f5KcNt6QfJKcY7dXs501fEfu/wA77vznJNxTvkva4E6gOsDo/s2/5yh9nsB0r1/fDaQdRqB/V+ik/Hc5x/QbWnTbFJgHz1cj9VfRI7GHZzGtAAgl+kCB/hf5KYYr2zDq5POtnz0Np/k/RUBRYGub6WjolsVCZ4+j/odv/TUfsrokUlp15bSdT7Z/k+0pfVX0ZnEcQP0lft+hBs7+73fpvcjbMho2sfWGgQwOa4n+0fU9yGWAgg4QMADU16wE/ptY4uZhgkGQ4GsEmPzUPr+SkrBcD+kcxwjTY0jX+05ymoMe9076zXHEua6f8xTTSlSSSSSn/9T0lJJJJSkkkklMXvrYJse1gOgLiAON3538kKPr4/8Apa9Jn3N7c90QY1OR7bWNeG6gOAdBP9ZP+zcP/RM/zG/3JKRfaMf/AE1f+e3+9MMrGJc0XMlsT7h+dq3X6KJbgYNbTbYxgaxsatEATPtb9HduP9dBxsfp2RWbqamGSA5rmiWlo0Gz6LPpfmo0atFi6Stex43McHtkiWkESOdQpKGwUt21sa1sk7WiBJ+kdP3kF+VazhjT8yiIkqMgGykqB6jcDHpM+ZKG/q9zRIpYY5JcQE72p9vxW+5Hu6aSxXfWG4GBjsP9p34aIf8Azne0w+ivUxLXOMf1kfYydvxR70O/4O8kq+Dlfa8VmRDRvLhDTI9p290lHwni4et0v4hXF0q3/9X0lJcT/wCOr0r/AMr8r/Oq/wDJpf8Ajq9K/wDK/K/zqv8Ayam+65v3Ct9yH7we2SXE/wDjq9K/8r8r/Oq/8ml/46vSv/K/K/zqv/Jpfdc37hV7kP3g93j8u+AWZ1n61dP6Tk141jX3PJBv9OD6TSJa63+W/wDNr/c9/wDo/U5az/GbRkY11XTsa3Gy3ACu281ua2Z3PbWx36Sxn5la5k5Dw91lhPquJdZkNJcXE/Sde0+5z3fy/wDt1TYeUJJOQV/VYcvMAemGp7vo+V1SvqTmNxXh+N+Y7s8x7i8fSZs/lp8G/wDypTjss21tDi8F30iW7WVx+dc7+d/4utcjgdUo6SLqPTa/Ic2brGk7BYJ24+z3OZ9JjLP+G9RZvU+ruynVNc3bdWfUdDtp9T8x9FrT7H1t/wAF/LT/AGP0RpGtD5/pMXu/pHe303qHU6MK5lNlb3l7d5LI0E7W/S/eTMdXk0MvrBDLBLdwg6Hbr9y4fG6vldQpZfmPFlrB6Ie4Q4tZx6n8v3+5dn0M7+iYzvJ408rHqLJi9uIPW6LLDJxk9qsMLKtVWyqwWb4JPfyI/d/85WjYwys3qWZTi49rjq9mh+i1odAf77rv0Nftc17E0SpMouRf6haXDbXUfzydrCP6zvfcx3/B+rsVC/Jxcf8AnbBJO39IdjJ/NDqwfWuZ/wAJ+j/4tV+s59he29lznY+S0ux7KwJc0fosiu3Lu3em6u32WU0U3f6b2V3VqnTj5OWwFzfs2TDW0ZLjt9YDayvFdkZH6X1v9BkY+z/RXqT3hsNVgxHro+h/V0k9HpJbtO632gAAe930dnt2fupLkel/Xfp/1dwmdGuxL77cZ7y+yva1u6x7ri3bk+ndur37H72JKP2snF7vB6b9zf8AR+Zl4o8HDetcPjb/AP/W4k8lJI8lJbrQUkkkkptYLyw2abg4AEaHv+476S1MJ5xmHqAk+m414zCdDcBu9Ta/3bMRrvU/c9b0VmdNx7crJ9CqJcJc530WtbLn2Pd+a2tq0bbRk3NYxra8PHZtpLy721jXdY1sudZdYfUftTJbn8WOW+m5ZMc5tUw5u73W2OcGs40bdb9J/wC/6TPf71nm7fuOjS8y6lwho/qD/Bo+XZVYD+lffa7T1HSK2Dl2yr+e2/4P3Pp/4pWsbCaKGXWtY601+ow2EuEvJbUamDa72bf+E+moJ5RH1HqV0cZkeEdNS3OnOczEx6zo6wbmh87vc7nTd7W7mrocD63HC6U3Dqqb6mISbXOO/Sy4s2sY1zKmOa66v+fyP+tLn2Y85FVYa6wAsIaRA1sc0O9Nod/ovY3009LLmC8AsxianQJixu17Lf8Ahcr2tr/8wVbJlOTSqF22IY+DUHXZ6C76wdQuoZkbxite51VjnloJAAtocz12tpa92/Jb+hxsn+arWdmZFGTjNzHF+TZiEU2vJLTseX249vrZTH2t2Wetj2bMdn/aatVMauo1ZTItyHFrbyQPT1pPu/S2+tZ/MXX799X82p9PyN2YKKqqqm3zTZsDrrBv/mbXPf6/8xd6dv8ANf4NRUuvxZ9PsvvbZj1s9DHul1eWxrnCnIgbL7Mm71drL2D7Ne6r0fZ7/wDBqhfhiq5wz7mNvBLL6wTk2tI+ky1zf0X+dlKxkdO6jdJzy7wD8mxrBI9vsZc827P3PSqRrcXEzMZ2TZlNdk4NY+3HFrda6yudlWR+n+yM9Wr+byrG/o/8IgQviXl+s3G7qT7C99ntqbvtjedrGt9+zd/1SSj1X0f2hZ6G81QzabdoefaJ3Cr2JLS/8Df9S/7hg/yn+F+1/9fiTyUkjyUlutBSSSSSm507ItqbkU1VPtOSxrX+k0ucGNdvcIb+Y92zerAz8alpqysS827g41ucKQRHs9TdW+7/ADPT/wCMQekdRHT7MmzUPvx30McJ9rnOreLHbf3PS+im6xnt6jmjJAI/Q1VOnuamCtztfzXqMgmZBj6a+a+qeGFcX6XZWT1Bl7wW0jGY1u1raY4JlxsN3qvuf/XsWiPrJjNDgzEe1rnNJ97SYbs2jRrWf4Jn02LBSQlgxyqxdeMlRJjddXfb9Z6Ra17se1zGlh2+o1phmuuxrWud/K2pUfWLBqqLTi3Oc6t1ZDbK2t9zXMmfTse76SwEk37rh/d/50l3uSeip+teLVeLP2c0s1DwX73lpBY5vqX762+0/wChQn/WrIsZ6bzfsiCyuxtTPlXS1jFhJJfdcP7v/Okjjl3dvM+sONk2C4YjmXFjBa4uaQ6xg2G4e3/Ctb+kUMb6xHFy68qmiHs0c0uBa9h9tlVjdNzHsWOkl91w/u/86SuOV3bZz78bIzrLsWp1GO8j0qXkOcwAD2b2bWu2/mJKsOQkpeCPBwV6a4a/q/Ki9b8bf//Q4k8lJOQZKaCt1oKSSgpQUlKSSgpQUlKSSgpQUlKSSgpQUlKSSgpQUlKSSgpQUlKHISTgGQkkp//Z/+0ZVlBob3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAyHAIAAAI+EBwCUAAOPEMyRTBGNUYyRThFRD4cAgUAEzEwMTc5M19vYmxQRVJFUEwuYWk4QklNBCUAAAAAABAx689fnwdAiRQLXwG+KDGlOEJJTQQvAAAAAABKpAEBAEgAAABIAAAAAAAAAAAAAADQAgAAQAIAAAAAAAAAAAAAGAMAAGQCAAAAAcADAACwBAAAAQAPJwEATAAuAHAAZABmAAAAsxM4QklNA+0AAAAAABABLAAAAAEAAgEsAAAAAQACOEJJTQQmAAAAAAAOAAAAAAAAAAAAAD+AAAA4Qkl