в могущество целых чисел проистекает из довольно замечательного открытия, приписываемого самому Пифагору: оно состояло в том, что число лежит в основе музыкальной гармонии, которую использует как виолончель, так и труба. Говорят, что его прозрение случилось, когда он проходил мимо кузницы и услышал в стуке молота сочетание гармоничных нот (мы не знаем, можно ли верить этой и другим подобным историям о Пифагоре и даже существовал ли вообще такой человек, или же он был выдуман последующими поколениями для пропаганды новых идей).
Как бы то ни было, согласно этой истории, он вернулся к себе домой и стал экспериментировать с нотами, получаемыми на струнном инструменте. Взяв вибрирующую струну виолончели, я могу получить непрерывную последовательность нот, постепенно перемещая палец в сторону подставки. Так я получаю звук, называемый глиссандо (хотя на следующем «рубеже» вопрос о том, образуется ли при этом действительно непрерывная последовательность нот, будет поставлен под сомнение). Если я остановлюсь в том положении, в котором получаются ноты, звучащие в гармонии с вибрирующей открытой струной, окажется, что отношение длин этих струн точно равно целому числу.
Например, прижав пальцем середину вибрирующей струны, я получу ноту, звучащую почти так же, как нота, с которой я начал. Интервал между ними называется октавой, и для человеческого уха эта нота звучит настолько похоже на ноту открытой струны, что в музыкальной нотации мы обозначаем их одним и тем же названием. Если я помещу свой палец в одной трети расстояния от головки грифа, я получу ноту, особенно гармонично звучащую в сочетании с нотой открытой струны. Такой интервал называется чистой квинтой, и наш мозг реагирует на подсознательное узнавание целочисленного отношения длин волн этих двух нот.
Обнаружив, что в основе гармонии лежат целые числа, пифагорейцы начали строить модель Вселенной, в которой такие целые числа были фундаментальными кирпичиками всего, что они видели и слышали вокруг себя. В греческой космологии царила идея небесной математической гармонии. Считалось, что между орбитами планет существуют идеальные математические соотношения, что и породило идею музыки сфер.
Для понимания структуры игральной кости важнее то обстоятельство, что ключом к объяснению состава материи пифагорейцы считали дискретные числа, а не непрерывное глиссандо. Они предложили идею атомов, которые подобно числам можно складывать для образования новой материи. Греческий философ и математик Платон, развивая пифагорейскую философию, представил такие атомы дискретными геометрическими элементами.
Платон полагал, что атомы представляют собой геометрические фигуры, треугольники и квадраты. Из этих элементарных блоков были составлены формы, которые считались основными ингредиентами греческой химии, – элементы, или «стихии» огня, земли, воздуха и воды. Каждая стихия, по мнению Платона, имела собственную трехмерную геометрическую форму.
Огонь имел форму треугольной