количеством знаков. А если записать такую длину невозможно, мне нужно хотя бы понять, почему это число нельзя познать.
С тех пор как я школьником прочитал это доказательство, я узнал о других методах исследования иррациональных чисел, так что, может быть, эти числа все-таки познаваемы. Существуют бесконечные выражения с регулярной структурой, позволяющие сделать такие числа менее таинственными. Например,
Открытие таких выражений выводит иррациональные числа в область известного. Дробь представляет собой число, которое при десятичной записи повторяется начиная с некоторой точки. Нельзя ли рассматривать такие выражения как структуру, не слишком отличную от повторяющейся группы десятичного представления дроби? Наличие такой повторяющейся группы означает, что существуют два числа, отношение которых дает значение данного числа, тогда как в случае 2 и π я вынужден использовать для выражения этих длин бесконечное число чисел. Вопрос о том, обязательно ли известное должно быть конечным, будет постоянно преследовать меня в течение всего моего путешествия к границам неизвестного.
Разумеется, для любого практического применения таких чисел мне, вероятно, хватит и приближения, выраженного дробью. Большинство инженеров вполне успешно использует вместо числа π его оценку 22/7, которую Архимед получил путем приближения окружности 96-сторонним правильным многоугольником. Собственно говоря, чтобы вычислить длину окружности размером с наблюдаемую часть Вселенной с точностью, сравнимой с размерами атома водорода, достаточно знать всего 39 знаков π. Существует даже формула, позволяющая узнать значение миллионного знака π без вычисления всех предшествующих ему знаков. Не то чтобы мне так уж хотелось их знать. Но такая формула позволяет достичь лишь конечного знания числа, полное познание которого требует бесконечности.
Из открытия таких чисел, по-видимому, следовала бесконечная делимость пространства. Только бесконечное деление пространства может позволить мне точно измерить размеры моего простого кубика. В результате этого открытия мнение Аристотеля о непрерывности материи оставалось на Западе господствующим вплоть до эпохи Возрождения.
Гармония маленьких сфер
Благодаря научным открытиям, сделанным поколением Ньютона и после него, произошел новый разворот в сторону мнения о том, что Вселенная построена из неких элементарных кирпичиков. Пожалуй, первым в аристотелевском видении материи, господствовавшем почти 200 лет, усомнился современник Ньютона Роберт Бойль. В своей книге «Химик-скептик» Бойль попытался опровергнуть идею о том, что материя составлена из четырех «стихий» – огня, земли, воздуха и воды. Такое описание, возможно, хорошо отражает состояния материи, но не ее составляющие.
Взамен он предложил новый список химических элементов. Более того, он высказал утверждение, по тем временам довольно сильно попахивавшее ересью. Он считал, что такие элементы представляют собой миниатюрные тела, или