какого-то успеха в решении проблемы устойчивости. Однажды поздно вечером, в момент, когда я уже был готов погрузиться в сон, у меня в голове мелькнула неожиданная идея: а что, если осцилляторы похожи не на бегунов, а на молекулы в жидкости! Точно так же как вода состоит из триллионов дискретных молекул, эта воображаемая «осцилляторная жидкость» должна состоять из триллионов дискретных точек, бегущих по окружности[45].
Вообще говоря, родившийся в моей голове образ должен был выглядеть еще более сложно и необычно. Мне нужно было вообразить множество разных жидкостей, по одной для каждой частоты, представленной в соответствующем распределении частот. Точнее говоря, бесконечно большое число разных частот, подобно сочетанию цветов в радуге. Поэтому я нарисовал в своем воображении радугу цветных жидкостей, причем все они «завихряются» вокруг одной и той же окружности, никогда не смешиваясь между собой, поскольку осцилляторы никогда не меняют свою естественную частоту. Преимущество этой психоделической картины заключается в том, что некогерентность становится единственным состоянием. Таким образом, я имею дело уже не с бесконечно большим семейством, а лишь с одним состоянием однородной плотности, причем каждая цветная жидкость равномерно распределена по всей окружности.
Я буквально выскочил из постели, схватил карандаш и бумагу. В голове засыпающего человека чаще всего возникают всевозможные фантастические картины, но идея, родившаяся в моей голове, казалась мне очень близкой к тому, что имеет место в реальности. Первым делом мне нужно было адаптировать законы механики жидкостей к моей воображаемой «осцилляторной жидкости». Затем я составил уравнения для создания стандартного теста на устойчивость: вывести систему из равновесия, решить уравнения для соответствующих возмущений (эти уравнения имеют решение, поскольку они линейны, даже если исходная система не является линейной) и проверить, нарастают ли эти возмущения или, наоборот, сходят на нет.
Составленные мною уравнения показали, что ответ зависит от того, насколько подобны между собой осцилляторы. Я нашел, что в случае, если они идентичны или почти идентичны, возмущения нарастают по экспоненциальному закону по мере того, как осцилляторы сближаются между собой по фазе, образуя зачаточную форму синхронизма. Затем родилась формула, описывающая скорость экспоненциального роста (аналогичная процентной ставке, определяющей скорость приращения суммы на вашем банковском счете). Никто до меня такой формулы не смог предложить. Это был точный прогноз, правильный или неправильный – другое дело. Наутро мне предстояло проверить свои догадки на компьютере.
У меня вспотели ладони, когда я, строка за строкой, проводил свои вычисления. Все работало! Я наблюдал рождение порядка. Затем я ненадолго остановился. Существует ли интервал критических частот, в котором скорость нарастания падает до нуля, а некогерентность уже не является неустойчивой?