и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия оказалось неустойчивым. Наш регулировочный рычажок оказался на критической границе между устойчивостью и неустойчивостью, когда контактная линза стала совершенно плоской. В этом – и только в этом – положении регулировочного рычажка равновесие нельзя назвать ни устойчивым, ни неустойчивым. Шарик находится в состоянии неопределенности; можно сказать по-другому: это состояние является нейтрально устойчивым. Если шарик сместить с этого положения нейтрального равновесия, он не вернется в исходное положение, но и не скатится в какое-то другое положение.
Как следует из этой метафоры, нейтральная устойчивость обычно имеет место лишь в переходных состояниях, при неких критических значениях параметров системы («рычажков», которые управляют ее свойствами). Но модель Курамото нарушала это правило. Ее некогерентное состояние упрямо оставалось нейтрально устойчивым, даже когда мы расширяли колоколообразную кривую, чтобы сделать популяцию более разнородной. Изменение положения нашего «рычажка» в достаточно широком диапазоне значений параметров не оказывало никакого влияния.
Мы обсудили этот необычный результат с Полом Мэтьюзом, преподавателем прикладной математики в Массачусетском технологическом институте. Пол провел ряд сеансов компьютерного моделирования, результаты которых, однако, повергли нас в еще большее недоумение. Он протестировал устойчивость другим способом, вычислив поведение параметра порядка на достаточно продолжительном отрезке времени, и обнаружил, что значение этого параметра снижается по экспоненциальному закону – что было, вообще говоря, характерным признаком устойчивости, а не нейтральной устойчивости. Теперь мы оказались по-настоящему озадаченны: некогерентность была нейтральной по одному показателю, но устойчивой по другому показателю.
Спустя несколько недель Пол читал лекцию у себя на родине, в Англии, в университете Уорвика. В ходе этой лекции он описал странные результаты, полученные нами[46]. Один из присутствующих на этой лекции, профессор Джордж Роуландз, сказал Полу, что на самом деле в этом результате нет ничего странного: это явление называется демпфированием Ландау[47] и стало известно физикам, изучающим свойства плазмы, еще около 45 лет назад.
О свойствах плазмы нам было известно не так уж много, но все мы, конечно же, слышали о Ландау. Лев Ландау был одним из выдающихся физиков XX столетия. В эпоху узкой специализации он хорошо разбирался во всех отраслях теоретической физики, начиная с субатомных частиц и заканчивая