there is also a stream of water or sap which is almost always entering the roots, rising up the stem, and passing into the leaves. On these leaves there are hundreds of minute openings called stomata, by which the water escapes as water-vapour into the atmosphere. A single oak leaf may have 2,000,000 of these stomata.
It is this current of sap which keeps the leaf fresh and vigorous; it is also by this current that every living cell is supplied with water and kept in a strong, healthy condition.
The amount of water used in this way is very great; in four months an acre of cabbages will transpire or give out through its leaves 3,500,000 pints of water and an acre of hops from 5-1/2 to 7 millions. A single oak tree, supposed to have 700,000 leaves, must apparently have given off into the atmosphere during five months 230,000 lb. of water.
Sometimes the water is so abundant in the plant that it collects as drops on the tips of the leaves and falls off as fluid water. A very young greenhouse plant (Caladium nymphaefolium) was found by Molisch to give off 190 water-drops a minute, and in one night it exuded one-seventeenth of a pint.
The water is found stored up in the stems or leaves of plants, especially those of hot or dry climates. The Madagascar Traveller's Tree, Ravenala, has a considerable amount of water in a hollow at the base of its leaf, and it is possible to drink this water. The usual story is to the effect that a panting traveller finds this palm in the middle of the desert, and saves his life by quenching his thirst with its crystal-clear water. Unfortunately the tree never grows far from marshy ground or springs, and the water, which I tasted for curiosity, had an unpleasant vegetable taste, with reminiscences of bygone insect life.
These are, of course, exceptional cases; as a rule the tiny root-hairs search and explore the soil; the sap or ascending current passes up the stem and pours out into the atmosphere. There the vapour is hurried off by winds, and eventually condenses and, falling as snow or rain on the earth, again sinks down into the soil.
It is very difficult to understand how the sap or water rises in the trunks of tall trees; we know that along the path of the sap inside, the root-hairs and other cells in the root, the various cells in the stem, and finally those of the leaf, are all kept supplied and distended or swollen out with water. All these living cells seem to have the power of absorbing or sucking in water,3 and eventually they are so full and distended within, that the internal pressure becomes almost incredible. Wieler found in the young wood of a Scotch fir that the pressure was sixteen atmospheres, or 240 lb. to the square inch. Dixon, when experimenting with leaf-cells, found ten, twenty, or even thirty atmospheres (150 to 450 lb. to the square inch). No locomotive engine has cylinders strong enough to resist such internal pressures as these. It is an extraordinary fact, and one almost incredible, that the cells can stand such pressures.
Yet these minute living cells not only exist but work at this high tension, and, in some cases, they live to about fifty years.
In this favoured country of Great Britain, it is unusual to find any serious lack of water. But in Italy or Greece, every drop of it is valuable and carefully husbanded.
Sometimes in such arid dry countries, a small spring of water will form around itself a refreshing oasis of greenery surrounded everywhere by dreary thorn-scrub or monotonous sand. All the plants in such a spot have their own special work to do: the graceful trees which shade the spring, the green mosses on the stones, the fresh grass and bright flowers or waving reeds, are all associated in a common work. They protect and shelter each other; their dead leaves are used to form soil; their roots explore and break up the ground. It is true that they are competing with one another for water and for light, but they are all forming a mutual protection, and producing an annual harvest.
In a climate like our own we cannot, like the Greek, suppose a Nymph in the shape of a lovely young woman watching over the spring, for she would infallibly suffer from rheumatism and ague.
But every living cell in every plant in such an oasis depends upon the water of the spring. All the plants there form an association which can be quite well compared to a city or some other association of human beings. They do compete, for they struggle to do the most work for the good of the community, and they incidentally obtain their livelihood in the process.
Most plant societies or associations such as those which cover Great Britain are not so obviously dependent on one particular spring, but the plants composing them are associated in a very similar way.
CHAPTER II
ON SAVAGES, DOCTORS, AND PLANTS
Savages knew Botany – First lady doctors and botanical excursions – True drugs and horrible ornaments – Hydrophobia cure – Cloves – Mustard – Ivy – Roses and Teeth – How to keep hair on – How to know if a patient will recover – Curious properties of a mushroom – The Scythian lamb – Quinine: history and use – Safflower – Romance of ipecacuanha – Wars of the spice trade – Cinnamon, dogwood, and indigo – Romance of pepper – Babylonian and Egyptian botanists – Chinese discoveries – Theophrastus – Medieval times – The first illustrated book – Numbers of plants known – Discoveries of painters and poets.
IF we look back to the time when all men and women were mere savages, living like the Esquimaux or the Australians of to-day, then it is certain that every person was much interested in plants. Nothing was so interesting as daily food, because no one was ever certain of even one good meal in the day.
So that in those early times there was a very sound, well-grounded knowledge of roots, bulbs, and fruits. They knew all that were good to eat, all that could possibly be eaten in time of famine and starvation, and also every poisonous and unwholesome plant.
Some savage genius must have discovered that certain plants were "good medicine"; that certain tree-barks helped to check fever, and that others were worth trying when people had successfully devoured more than they could comfortably digest. The life of a savage meant tremendous meals, followed by days of starvation; even now, when young children are fed on rice in India, a thread is tied round their waist, and, when this bursts, they are not allowed to eat any more.
Very probably some of these early physicians were lady doctors usually of a certain age. Men were too busy with their hunting and warfare to have time to try experiments with drugs, to make concoctions of herbs all more or less disquieting and to find out if these were of any use.
So that such medicine-men or witches gradually came to understand enough about poisons or fruits to make themselves respected and even feared. They would, no doubt, make botanical excursions in the forest, accompanied by their pupils, in order to point out the poisonous and useful drugs.
It is worth noting, in passing, that this habit of botanical professors going on excursions with medical students has persisted down to our own times, probably without any break in the continuity.
But it was soon found advisable to make this knowledge secret and difficult to get. They did not really know so very much, and a mysterious, solemn manner and a quantity of horrible and unusual objects placed about the hut4 would perhaps prevent some irate and impatient savage patient from throwing a spear at his wizard – or witch-doctor.
Shakespeare alludes to this in Macbeth. "Scale of Dragon; tooth of wolf; witches' mummy; maw and gulf of the ravin'd salt sea shark; root of hemlock digg'd i' the dark; … gall of goat and slips of yew"; and so on.
Most of their cures were faith-cures, and they were, no doubt, much more likely to be successful when the patient believed he was being treated with some dreadful stew of all sorts of wonderful and horrible materials.
This explains how it was that the knowledge of medicine became so mixed up with pure charlatanism and swindling that no man could tell which drugs were of real use and which were mere ornaments giving piquancy and flavour to the prescription. It is not possible to say that a snake's head, the brain of a toad, the gall of a crocodile, and the whiskers of a tiger, were all of them absolutely useless. Within the last few years it has been found that an antidote to snake-bite can be obtained from a decoction of part of the snake itself, and it has also been discovered that small quantities of virulent poisons are amongst our