в горшке, настольным компьютером и монитором.[86] В ходе этого процесса видео разделялось на несколько экранов, на которых было показано все, что способен почувствовать Kinect. Сразу же становится ясно, что если Kinect и не полностью решает проблему SLAM для комнаты, то достаточно близок к этому. В режиме реального времени Kinect создает трехмерную карту комнаты и всех объектов в ней, включая сотрудников. Он распознает слово DELL, выдавленное в пластике на задней панели компьютерного монитора, хотя эти буквы не раскрашены и имеют глубину всего 1 мм. Устройство знает, где именно в комнате оно находится, и даже способно рассчитать, как будут отскакивать виртуальные шарики для пинг-понга, если их бросить в комнату сверху. В статье технологического блога Engadget, написанной после проведения SIGGRAPH, говорилось: «Kinect сделал трехмерное восприятие достоянием мейнстрима и более того: из обычного потребительского продукта сотворили нечто такое, от чего просто крышу срывает».[87]
В июне 2011 года, незадолго до SIGGRAPH, Microsoft выпустила комплект разработки программного обеспечения для Kinect, дав разработчикам все необходимое, чтобы они могли писать программы под PC, с помощью которых можно было бы управлять устройством. После конференции возник огромный интерес к использованию Kinect для целей SLAM. Многие команды, занимавшиеся робототехникой и исследованиями искусственного интеллекта, загрузили себе SDK и принялись за работу.
Менее чем через год команда ирландских и американских исследователей во главе с нашим коллегой Джоном Леонардом из лаборатории компьютерных наук и искусственного интеллекта МТИ анонсировала Kintinuous – «пространственно расширенную» версию Kinect. С помощью Kintinuous пользователи могли использовать Kinect для маппинга крупных объектов, например домов и даже улиц и площадей (которые команда сканировала, высовывая Kinect из открытого окна машины во время ночных поездок по городу). В конце статьи, описывающей их работу, создатели Kintinuous обещали: «В будущем мы расширим систему, чтобы она могла в полной мере осуществлять SLAM-подход».[88] Мы думаем, что нам не придется долго ждать очередного известия об успехе от этой группы. В руках способных инженеров экспоненциальная сила закона Мура со временем позволяет решать самые сложные проблемы.
Некоторые из технологий, которых мы касались в предыдущей главе, используют недорогие и мощные цифровые сенсоры. Так, у робота Baxter есть несколько цифровых камер и датчиков силы и положения. Совсем недавно все эти устройства были чудовищно дорогими, неуклюжими и неточными. Беспилотный автомобиль Google тоже использует несколько сенсорных технологий, однако самый важный из его «глаз» – устройство под названием LIDAR (от слов light («свет») и radar), размещенное на крыше машины. Этот прибор, разработанный компанией Velodyne, содержит 64 отдельных лазерных луча и такое же количество детекторов, заключенных в корпус, совершающий 10 оборотов в секунду. Устройство ежесекундно генерирует около 1,3 миллиона единиц данных, а бортовые компьютеры превращают их в трехмерную картинку в режиме реального времени, покрывающую до 100 метров во