шара, удар обеспечен. Значит, ширина мишени в этом случае, как видно из рис. 26, равна двум диаметрам шара.
Итак, вопреки мнению игроков, при данных условиях вдвое легче попасть в шар, нежели свободно пройти ворота с самой лучшей позиции.
27. После сейчас сказанного эта задача не требует долгих разъяснений. Легко видеть (рис. 27), что ширина цели при крокировке равна двум диаметрам шара, то есть 20 см; ширина же мишени при нацеливании в столбик равна сумме диаметра шара и столбика, то есть 16 см (рис. 28). Значит, крокировать легче, чем заколоться, в
всего на 25 %. Игроки же обычно сильно преувеличивают шансы крокировки по сравнению с попаданием в столбик.
Рис. 29
Рис. 30
Рис. 31
28. Иной игрок рассудит так: раз ворота вдвое шире, чем шар, а столбик вдвое у́же шара, то для свободного прохода ворот мишень вчетверо шире, чем для попадания в столбик. Наученный предыдущими задачами, читатель наш подобной ошибки не сделает. Он сообразит, что для прицела в столбик мишень в 1½ раза шире, чем для прохода ворот с наилучшей позиции. Это ясно из рассмотрения рис. 29 и 30.
(Если бы ворота были не прямоугольные, а выгнутые дугой, проход для шара был бы ещё уже – как легко сообразить из рассмотрения рис. 31.)
Рис. 32
Рис. 33
29. Из рис. 32 и 33 видно, что промежуток а, остающийся для прохода центра шара, довольно тесен при указанных в задаче условиях. Знакомые с геометрией знают, что сторона (АВ) квадрата меньше его диагонали (АС) в 1,4 раза. Если ширина ворот 3d (где d – диаметр шара), то АВ равно
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.