Яков Перельман

Живая математика. Занимательные задачи для любознательных умов


Скачать книгу

одинаковую сумму очков.

      21. Магические квадраты из домино

      На рис. 11 показан квадрат из 18 косточек домино, замечательный тем, что сумма очков любого его ряда – продольного, поперечного или диагонального – одна и та же: 13. Подобные квадраты издавна называются «магическими».

      Вам предлагается составить несколько таких же 18-косточковых магических квадратов, но с другой суммой очков в ряду. 13 – наименьшая сумма в рядах магического квадрата, составленного из 18 костей. Наибольшая сумма – 23.

      22. Прогрессия из домино

      Вы видите на рис. 12 6 косточек домино, выложенных по правилам игры и отличающихся тем, что число очков на косточках (на двух половинах каждой косточки) возрастает на 1: начинаясь с 4, ряд состоит из следующих чисел очков:

      4; 5; 6; 7; 8; 9.

      Такой ряд чисел, которые возрастают (или убывают) на одну и ту же величину, называется «арифметической прогрессией». В нашем ряду каждое число больше предыдущего на 1; но в прогрессии может быть и любая другая «разность».

      Задача состоит в том, чтобы составить ещё несколько шестикосточковых прогрессий.

      Рис. 11. Магический квадрат из домино

      Рис. 12. Прогрессия из домино

      Игра в 15, или такен

      Общеизвестная коробочка с 15 нумерованными квадратными шашками имеет любопытную историю, о которой мало кто из игроков подозревает. Расскажем о ней словами немецкого исследователя игр, математика В. Аренса.

      Рис. 13. Игра в 15

      «Около полувека назад – в конце 70-х годов – вынырнула в Соединённых Штатах «игра в 15»; она быстро распространилась и благодаря несчётному числу усердных игроков, которых она заполонила, превратилась в настоящее общественное бедствие.

      То же наблюдалось по эту сторону океана, в Европе. Здесь можно было даже в конках видеть в руках пассажиров коробочки с 15 шашками. В конторах и магазинах хозяева приходили в отчаяние от увлечения своих служащих и вынуждены были воспретить им игру в часы занятий и торговли. Содержатели увеселительных заведений ловко использовали эту манию и устраивали большие игорные турниры. Игра проникла даже в торжественные залы германского Рейхстага. «Как сейчас вижу в Рейхстаге седовласых людей, сосредоточенно рассматривающих в своих руках квадратную коробочку», – вспоминает известный географ и математик Зигмунд Гюнтер, бывший депутатом в годы игорной эпидемии.

      Рис. 14. Самуэль Лойд, изобретатель игры в 15

      В Париже игра эта нашла себе приют под открытым небом, на бульварах, и быстро распространилась из столицы по всей провинции. «Не было такого уединённого сельского домика, где не гнездился бы этот паук, подстерегая жертву, готовую запутаться в его сетях», – писал один французский автор.

      В 1880 году игорная лихорадка достигла, по-видимому, своей высшей точки. Но вскоре после этого тиран был повержен и побеждён оружием математики. Математическая теория игры обнаружила, что из многочисленных задач, которые могут быть предложены, разрешима только половина; другая не разрешима никакими