А. А. Быканов

Математическая модель бухгалтерского учета


Скачать книгу

в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAAlQAAADdCAIAAADy2ntHAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAeP0lEQVR42u2dPY4cRxJGdRMJ0EGEJXSGxYK6wS4k+VqDOgHlSc7wAJRDWXMAGvLoEzQJmkN33N4APygUG5F/Xd3Dmel6D43BTHVVVmZkZnz5P18cAAAAdsYXmAAAABA/AAAAxA8AAADxAwAAQPwAAAAQPwAAAMQPAAAA8QMAAED8AAAAED8AAADEDwAAAPEDAABA/AAAABA/AAAAxA8AAADxAwAAxA8AAADxAwAAQPwAAAAQPwAAAMQPAAAA8QMAAED8AAAALl38bm9vf3n+/P3795gbxPX19e8vX2IHwGlcDJZZlmWWcYjf34X4x+9/MGdH4YDIi6sr+2CHFbwG2U/7fQ/Kh9N4pI1ay7jHon93Ln7WFrAPxQKqg/vu6VMc3Apff/mVOsr2036/+PTiNMi7Ry9+5tqsrjJ2ARSPE3t+cij28+J7fpSKR41lnGXfo2jU3q34WdOeFhxQQk7k5ubmxdWV2cp+PqI5FYrEbjt/lom7Fr+3b99aE+D169epGvu8xZs3b+yXb588+fnZM7ueHrdvZcTm4Ji5ALtoX9krLJDfX760+/Wnfbzy2C/xikXJ3Id+t4jZg6pp9e01fI9wDNAejFduPuEvta/skVQsml/pKbODvdG+6jV7LVZygvpUV2h/WlTtK7NqXFESY+6Pu7lSZJRBSlHT1doNFlV7haxn92xLtb6ycHoOvRntZPAYYWVoL132u0fbjdOMecroWDwUiMckFu8aW/vFbvbcjDfY9bGVeiZVx6hGrJmccUarFvg9sZbZbR6CWSymKJWrFWt4fVR9sQBrzAdOY1Dwxu7C46BHlBb5Za+5tfip79IsP4NXRJ+QMm7RmE0nab8ryfJCHtWmed1KnuNyrSlKMv602A+ybOwiVERTSduX+JlrNhNEk9nvnivXn1B5UhGsxpVZZcpYH6x0Wji6YrVFeXP4axopvdRLqtTOxcwu2pXm23vhKwkquzGlCjONU6VoxPikr+x1Fr69KOpB81mLdjJLLPeKtoWjlXJ18KHGXJGJ2ukLDTS9lOqV3yDBUxZ7zI9KtTvfgbPrRbteUb6M06X1Ne71onFqzBVgylZ7xLLGxUxZEJftpOIhVx4DaQY7sFJKiF8Zt6x7T9XiZNdVnBRVT4v8YH02LtOdWqPmlMZvB2Ni1WmsFLyxu4hxUBM5flWriSVQEpWyvveKpk+IJWrFmD0nqWZ9bIj3ClutDk2nNK2V4yybugh/+8NfznaH4qdmzkoNT0a0r+zBWHzVrnTr25+pWeGhqVZ4VqkkjYVKj/jbx+Ev+uKmr+l95TM6seHZLDopYpLtGI419GIg/udiPO2lMcCagxbPVF1jJ/WoVEd5GG97WDG4Li6mSy+NxmlGL71FJk1RlUNJmRKfqiEPpGsqWvKGZxE/dUei31dF8E6AfxWfNSPIAhusYQFOxzN7TmNQ8Mbuopkj8fd0s1+M5jr2FcloU2OuOElv2ccsG5SEFac0LfY1y6YuQngPe6fi10t/tXhqwtQlbbHNovZm76XJ6de2Va/TEPN7EP7ZxU8+KA2B9sp07cnFqL7+xCnxNOvFV6RvpRne3F5XuPFXzcbjBvFLdXKQrhWJqveoM51GpNVzjTpaQ16J/Ip7UqN7UDyOcnM1OSqKnhYfzqrd6A3WUOSnE5ZNpzEueGN3UQ0ew9HcQepEejdr8yt6RhtcX6kvdbDnTsWvmWVjFzEo9vsSv17GNO0VL/q4s4/Ux0maqVnjgEOdP2vGKhblafjrohIj7/JWOyVKbJqkGY8ENlvuaebvRJFWI2DsApqZuJLqRTFYN3gazhq8zgpGNc6K+DXvkRRF3a3DnrX5lQq2e96xe7I7FdRZxK+X5Nrym1bYFWtYOV9ZAdhM2rjgjd3FtLWh5rIripoXKXUbXjFQhZXNKgPzpmFbj5JZeDACsUH8pllWXcSxyUT88sVx3Z7WfLWP7KcV6zTu13t8/e3VeTXnYGKAmjV0oUrJP7aUSPN8MUUar9d0iGawt4mfVvpoWP/YqK6n+uzip6UQK+kyN1eNk2S7ma1yf83opU6AF49mHqUpqLGV/IpGvdQMP4v4NZPTvNhzkUdZIw0bHlW7xwVvQ/lJQ6Ca1DfbWqGVCqY3bvAJJ6pC77Zex9rnQV2upi3yXiSnWTZwEYjfpOfbtEucr2o2P8eN09o+Ut7Ulkuv57f49s3DiX5PU1EGY4lN/dMKLlVaT6Or/inxtAB9EemxUV1P9aA+bzN4mhNqpisuj9zQ85OnqAtxq0bGnl/Ko0NnKrFnJb/i3b5ziZ+SU4V5sed3lDU0gDZd2dRzGuOCt6HCJvHzimMlRDGs4nfsK+6u59crS7Egnd7z62XZ2EXEkMcWu3zxGyx4GWRqnTavoxzjdbTmTHtr6npzfotvP2yd8/MWcXPYc9vGJk2x+Ku1HvqUeMpu7hCbUR0sTllPdZrOOXHBi9XDuFx2mq5t4qdAUnMqDZrVp8bjolMr+cKHcc5uED8lJ7o2RbU2RJrGOdYa7prH035NpzEueBsqrMfWu026p7kmc9sr7kL8NMw4KMax2336sGczy8YuIraNdj3n11u1XO2lFfxpiD8ZPfVv7Nu0NSL92VswWcuEvS5W12n4m3t+SmNzFUnyIxpYqJH3lmkaAvVonCh+aY1ZL6pp85NHaT3VSb9P3Oqg4ZdpumI3ZYP4+W6tOsY+mGuZit/YSrqStgecRfxk+VjydaW6+KZxNlhDa2TGDZ2m0xgXvLG7GJgrzhPLp8eFBXW2+6hXnF38muedxvem7Q1nWe1Zs2zsImJMdr3VobdfVfYy05iN5OXrTknff2q3aTdS3ZWlgSwJZzK0rN/cKu5Kc/sJe7xuFR+HvyIqad+YqnRzROUQ1rxoA6K2sTcjry2A/lXazKcKLIHUxlgVXL23uUowFWU5L+1W1n7e5Hk9qha+hWw/43qwo1Lt9ww2uR8WNlaq29dcc1/T5Wv5knFWxM9T5IVBKyOqP4qSkHotyUP5jsxeNJSQ9fWi8alBRse4SVHiVshmaLUVu2iNNC4XC/C601gpeE13MdhYqQ3+Ufg9YjXJY4+0Ln6DvbDNRo/GMzR+nmybkhar26CyHyV+NcumLmLQitqR+B06JxXFedd6zoU7BZWwdEZG/TadK+F51ttHHKemtfZh/PYY/soJL77Qw9PoiyySzsVo+9SxFLcnBh4xBZusZ99K8yTnmpTWqRD1yJLeASJSIy3TkBnTSSJ+uEOs/9tSfZidZVUNng5Jkf2jH9SZIzVd2rmc/j2CXdT/YVk/4cUPBqrlx09RiAt3LTKe5Hj0hm4YWElHe6RRgUHE3CHG5E+PHFKUeucoJWPWGwbWaEZVepMmQVecRq/gjd3F4EgdX6nocfMzEJrmWnlFPVgqhjA1ZnWSfpyNGus142KN8wR6PH0Ea9sJL70sm7oIjjf7u5mQpOszLATSAS5HTQDA54cjjIFSsT7n9yjgYOv/G6lL7bi7zlctCl+fQIJ7rOH8SyNYcRqIH3n3+MSvztPeab7qdQPrI34PBP6ZLaw7DcTvsfTa+We2uSibGg0mk8/IeDvR+Fhh+JyVZLzqD9C/6DT2xp06yTtC0+eP6F9uffE5XxanfHUez130J3qbK33CfGXCGQDg81Od5OOSwEfEF5gAAAAQPwAAAMQPAAAA8QMAAED8AAAAED8AAADEDwAAAPEDAABA/AAAABA/AAAAxA8AAADxAwAAQPwAAAAQPwAAAMQPAAAA8QNY5OPHj7/9+tu7d+8wBQDiB7AX2dP/F0X8ABA/gB3JHuIHgPgB7E72ED8AxA9gd7KH+AEgfgC7kz19/vPvf//3p5/43PvnH998M86pu/7QDEL8AC6BDx8+3Ls/5fOIPogf4gdwIdze3v7x6tVYAn/79Ve7hw+fjx8/UmUQP4C9SCDtfQDED2B3Eoj4ASB+ALuTQMQPAPED2J0EIn4AiB/A7iTww4cPmAIA8QMAAED8AAAAED8AAADEDwAAAPEDAABA/AAAABA/AAAAxA8AAADxAwAAQPwAAAAQPwAAAMQPAAAQPwAAAMQPAAAA8QMAAED8AAAAED8AAADET9ze3v7y/Pn79+8xt2F2MGuYTTAFPNhK9ObNG3ud/aQGAeK3vdL++P0P19fX2Noxa5hNqL2b/fK3T55ES+5B+T5PJbIXvbi6MvN+/eVX9gs1CBC/7VgbzT4YGrOci99fvjTXXH+ntJzeo/ru6VN7kUnL27dvsQkgfic10Mw3MeDZdDRmGTrE23p+Zjp5Z3N/F9/z+zyVyMJ/XH0pahA8aPFTQxIr95quZh/ssIHXr1///OyZWe/F1dXFj319nkpkyvcwZ/ioQfD4xM/a5tY0Mz/lV25ubqy82kX7WGWzgquP/a6L9q3dE32c39Nr4tl184PfPnkiH2GuUD0Dha/ZC4Vgv/z+8mV8UO+Nk+fNGFogfk+6wWOrizGxFg2PWHxvatEPPI4Z0Jy7HJ/drMhUd68oSQwsSrWLUE3kSbArioAFImvYbXa//enTaXaD/WLXLZCYO4Pwm1aKV/RShexZn8JUltlH722GaT9TmIlekWs+pSzzMplyc6VQjUOoiZXZLcCmYdcr0aCIJrNUw6qiqXNppSuFtiFAjUW7fVQw9Hu1wzgfte6m5wGmNQjgfsTPKpIVzVqrvRpEVFviFatCdkU1UC4gzcD7KgB5W73O7lTtqu+yO+Wn4vIBVdTkeVU5U0Kij0tJsBvsEbtBsVX4iq2LSq26qvC9ZQXmj/SgQrbH45U4+GPOxWdoLCHRk/ZM5I4jvV3f2p3uzq4/IR8kRxYzdBB+NaPbLYYgIzTb7/oqjWomyyv7ptN+tcjVK5YKS503HZJ9poVqGkKznFuYmmM7thJNi6huaGpqNayKjTcpVKjSKOh6gBYNT3VMb0x4skMzH+OqFhkzNgKmNQjg3sRPTcgVT1Qrgxra0SmoesdWntXY1KOS37F7/MH4LvtW92s92yCeKYbVQadgXaQ9qjFAKbc1iqsp1Cge2LB6/ySl8p7RAtEd9EzUTJSFGYOqQlUbCoPwFyWn2e4ZfJVCUNfndPGT3VJaZGrvpI4L1TSEmqJk8FMq0biITg2reEZpUXWLFXA9QDOCN4Di9ZjYeF1NqJoiS3iMkjrTx9YggHsQv165XPGA6mdETyo5dAmRovTWpLkUpXfpugU7rtVNz1KFwaOaBl5S+AP/rvGcsfilGzRCpcjIJvHt0QmOTeRG9sfNtjGoapbkYafh37X4qVd6FvGr5c1N7UVuXKhWQogpksefTlguVqJxEZ0atva6fJh3Q4AxUSvXNbDR7NMPOruLNQjgHsRv4PGnHrB3j7eCF9e4Tz2jhqrGnlE9uWafxh4fj7rEKZAN0Ws+6BfVPK8TWmovT00UdVRDndO4xYvT8NfFz6eFLEW9flINQeJxFvFrBiJFqR2vqWUGIcS8W1mpuFhyekXUi4Rl1sCwzaHjdPGoANevqxHQ7NMrAl42mnPnK7kP8JjEb1obFwt97zarcppRaHYdUj2321L/RjeofjYXs3j46hfekfiNH19UBblm9aKOcvHT8JMZfalILzk+a+gxGYifKbcsfxbx600cNq/3CvBKCO7N05jetko0LaLeR0+j5ZvFbzHAdfFTt6+ZIytdOsQPHqL49UYkVsRPXjLNrsdGtAKZbsVtvkvz+b5scuwZfalbc6RUzjp1/hR+XLk6cGHNGZ2BC1BnIvqLnhFWTORik6Yte6Yzl+eDeNPwNwx7aubM/xyIn69rPYv4qbzVhbLNjGu+cTEE/anuTl3Bsa0SjYvoimF1c4r8eDBmmlOL133st4rfuGos1iCA+xG/zQtezMPWFd5x+qQub1sXPwXuyrQ455fWyKQOUNSAFP7ABawseGnO+clPyQi9RRMrJtK8XXMnWW/Ozz3sNPxtc36xw9ETPzOCR/gs4qcsS31f+fcVy6yH4Cly8RhP+x214KVXRKeGVVbG6lZjflSAi+IX18o2hz2n2xhY8AIPUfxO2eoQp6PiFa8M8tqpetjvqSk9GLs7l/hpEXZdGhDb0U0XsLJQuz6onQ/JCNHnasT1WBPVDlw1i703JnMa/gbxS4vme+IXj3g+i/jV9R2H/jay5hsXQ0irH6etk8VKNBU/iVnPsFXqasyPCnBR/OKSn+aCl9Q4SG0LtjrAAxW/uj83tunqZq/kOOLehrhzLt2g7qBVFftZl881Nye5XKkD4f40rWX3p6b7/PSnP+7h+3JEjYlZCNEaSc574qdd576RLvlKN4JEUZuUXRhWTJQkLSXKQrD3SlDrUfrj8FfEL2V97II0twDWnY4r4rey4zCNYGsFUHNNSm/H20oIdYw3LVRZrETTIpoiOTVs3KOpZUSpuh0b4PT6uE75GzVDoV2/yZgrNQjgHsTvUE5mskKv0aF4lIOftBKPnHAVGZ/w4s/WG3TWhr8rfavVcXqdTjXUFF3c3+1LCew29z7N0y4UQmw7W13VNmG9V/H0XfDe8J+O2MTVbun4m2Ql3Vn1aWAiN0XzelxSkXZBTMNfPOElHg6SXiRn518pazxDPTsGJ480i1w9KSY+pWME3No1wHGhGofQPNlEZxipfbNeicZF1FejxBs8MtWwtbqlpG0LsFevox3SAUkpR6wke+AWQm0icLwZPFzx42DrHovH8i6ueduM2viLQ4VwL1CJTqlBAPcjfgf+88hpZrlr8YsnUSF+j720YBOAByR+/DPbZlt+8d/H3Kn4xYWjiN9Dhkq0uQYB3Jv4qerG5Xk7x+xQZ+aaNNcBnYvm6sTI4CBjuBf9oxIdW4MA7ln8YHPbdrC24kR0cHAz2Liso676AwBA/AAAABA/AAAAxA8AAADxAwAAQPwAAAAQPwAAAMQPAAAA8QMAAED8AAAAED8AAADEDwAAAPEDAADEDwAAAPEDAABA/AAALp4/Xr367dffPn78iCkQPwCAHYmf/pklEoj4AQDsTvyQQMQPAGCn4ocEIn4AADsVPyQQ8QO4THr+jg8fJBDxA0D8+PD56l///Oft7S21BvEDQPz47EX2/vzzT+oL4gcAcFH05vyQPcQPAGBH4ofsIX4AADsSP2QP8QMA2JH4IXuIHwDAjvjzE9gB8QMAAED8AAAAED8AAADEDwAAAPEDAABA/AAAABA/AAAAxA8AAADxAwAAQPwAAAAQPwAAAMQPAAAA8QMAAED8AAAA8QMAAED8AAAAED8AAADEDwAAAPEDAABA/A6H29vbX54/f//+/WWY7Pr6+veXLyk6sIIVFSswF5k0q9FWr612k8uA+LWV78fvf7iw+v/i6so+lJ6j8GJgP+33PST54suJshL9A8SvgbUN7XNhVrPa/t3Tp5faor8jvv7yK/WY7af9fvHpteJhheTik3mRFRwQvzPUf3NzFzPguZOk3V3PT17Sfl58z88KhhWPPTSP9pNSQPyOwFq+F9wqvOzUnZ2bm5sXV1dmNPt58QNlVjD20O3bYWIB8Zvz9u1baxK+fv06eUCf8nnz5o398u2TJz8/e2bXa9fKvrUQepPqdoM9aI9LhLSsxv60R+ynBW5h2hX7Uw43Pmuxsov6pEarPaX32k/dYL/rTwsz1Xl70cCPyyl4UIpbCkeRtITYDfaVupIe83i/zKWL9m20mH2ld8XkWBqj9dLjMbEWsZtPrLw0XrFoV5vEEJpher+5JiTaxJ/ynOolv5eb9rpkfM/QuGTJbpP99YpYYlNM/KW6mMp2xF6Xily02yBFVmvsQWWQha/Ix/Q2o2Q/k5EX68Ig7Ye/Rm7dhjHfo/2Vm6kkAOxX/KyOWZWIlcR+dy25/oS8tqqo3xnXyGh+KHWw/Ab7Rf0Ju8e8hiuut0Obg5MWpt0gSdD9dVVCnJRSnGsCpS4DD+heqReORcwSrpi7w3I7yNckA8oT1VaCkqP0Kkp2xVJqX8XUReMc/hqKtNtcwlde2oxGMlcMoSZcV8bdhabZ61OD3JTe1NDiel373WzuJUQGTOUhxcS+tWCj0dYLRo1/vCK1k221TNSu1ApSo6Rqksw1rQsraY8FuBl/v4clYID4/V0/rWqtOMekcFaL4oM1HPnrpCIpNGln7fOpNxD7B9LO1G5dET85l+m2h4H4+TSYpyI6kRXvb2Y040Q/qxZ6bCjYFbdP8oZ12HZRcgbS1ZO66HOVR6eL3zg37ad/FUMzayjXZPCUg5KfWB7Ss661PZQ6b9Mca8nasFCiYmYl46hnVs01qAuLaU91oZdrGoDBnwLiN6oPtZaq5eg3W7WM7izdL8lpehZ39/Zq+8Q+QRqXi2IpB/rzs2fHip9um0779cRP701DoNEOK96/rpyU/6oDbvXxOI732cRPvfaU0s3iN81Nz/0Umq7Xx73fFstDfNYemY7v2bODArMifulKNVfqyPr45HpdWEz7ovhp4BR/CojfpJ7UWtoTGI3M1BGe8at9SqkuQuu51NS57DmaxTRGqe6JmZrzdWbLu3Er3t+nYdTU0Kd2Ru1dMoU/7lc2i196ozdHxuJndyp6ZxG/xdw8qtRJadLYg24zi60M7h1VYBYbFqlNE1+hQe9BDWrWhcW0xwJ8bKUGQPyOdkNWmTWVVZu0i9VMktmczGu6y9QnO5f4xaCOTYhPjMVPeuM0AtEDyoFKtLQOYttL03t9KYcPr/XETz5a/Y+ziN9Kbo5Da2ZBuu6LPlZGue9I/HqFx5pKitLgpc26sJj2VBcQP0D8DisuYL2emGfxwRYtA/EF8c1qPxj29BqrOp9cvC6m4b7U2tUynEVflsaIEuaYPKhjE7Lo/ZsTq1X5Ys9PY4/NFXrbhj01gaQrA/Hzbt+5xG8lNweh6fG6WbPXv1Rnfdr504ji2Xt+zZFYXyHcK6W9urCY9jQxPBC/aTkE2JH4DRa81MEWH5bRlIl7tOZo4bgBrgXf3t2JXynwtJw9aVg6vfOUBS8WrN/QTMhgynB92HMwC6UVMXXOL8rV6eIXeww98dO2ivU+60pMVnJzEJoeT+OBskyv9bPS9jp9wUtzzq9OhGst6LiU9urCYtqtlMYSzoIXQPzm1K0OvVqqFfnVVzbvl+Qkj2+/uweMna04HCd891u6EkOzENL6yc1bHeJSzF5CYvQ03rvu/X3ZZFzLEANUL8RTFx/XV0m8T+n5KRN74mevixE7i/it5OYgNN8IWDvKvdWezRbVesHYJn6xSCeTetett9qzVxcW0542/7HVARC/Oc1N7l5LrapYnZGvT9vY3b+oYVtdpy8VUb/KfvpGN73UPYKcctzMdPj/1fAaAKz7uuL9PfHTlozBqnc5wYF78oRoX5cOQBm7s+p9fCZPjfS40bt66vi4OoXJOIv7K2KwOl7A87q5o+Oo9aLxqek2x2lu9kKLj/sj2oo6XhuiP8cHetVN7ofWos1Da2ODN4luP6GCkYqZbwccZNy0LkzTrkdi8WjmWq/BAbBT8Tt0DgCLSyrqESFRV3SQhNU97YdLh0q4S1V1tW8