Анатолий Васильевич Молчанов

Население Земли как растущая иерархическая сеть


Скачать книгу

была постоянной и составляла: 4/39,75 ≈ 0,1 человека в год. Постоянство скорости роста связано с первым законом Сети: прирост за цикл, т. е. за 40 лет должен был составлять (по крайней мере в среднем) 4 человека и так на протяжении 16384 циклов. Вторая стадия роста Сети от трех до четырех клаттеров заняла 65536/9 = 7282 цикла и, соответственно, 7282*39,75 ≈ 290 тыс. лет. Средняя скорость роста популяции была равна: 9/39,75 = 0,23 человека в год[12].

      Длительность первого исторического периода как времени роста Сети от гармонической с размером 2 до гармонической с размером 4 равно: 650 + 290 = 940 тыс. лет. Точно так же суммируя далее времена роста Сети от гармонического размера до гармонического можно найти все исторические периоды от начала эволюции до второй половины XX века. И если взять отношение длительности каждого предыдущего периода к последующему, то получим следующий числовой ряд:

      2.4, 2.2, 2.1, 2.0, 1.9, 1,7, 2.6, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0

      Наибольшая степень сжатия периодов гармонического достижения происходит на начальном этапе антропогенеза (2.4) и во время неолита (2.6). Этот числовой ряд и периоды эволюции, с ним связанные, можно разделить на две части:

      2.4, 2.2, 2.1, 2.0, 1.9, 1,7, 2.6 – до неолита и неолит.

      2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 – после неолита.

      Поскольку после неолита сжатие циклов гармонического достижения происходит в той же пропорции (2 : 1), что и рост размера сети – этот рост идет по простой гиперболе. Чего не скажешь о росте до неолита: здесь коэффициент сжатия не является постоянным, а уменьшается от 2.4 до 1.7 и кривая роста в первой своей части не является гиперболической.

      Гиперболой ее можно считать лишь в первом приближении. Но уже и такого представления достаточно, чтобы понять, что единой гиперболы, в соответствии с которой происходил рост населения Земли на всех этапах эволюции и истории – не существует. Разрыв в динамике изменения коэффициента сжатия (1.7 —> 2.6) говорит о том, в эпоху неолита происходит скачок скорости роста и начинается демографический взрыв.

      Что касается раннего (нижнего) палеолита, то поскольку никакими более-менее надежными данными по численности наших далеких предков мы не располагаем, то и сравнивать теоретические данные здесь не с чем. Для верхнего палеолита (40—12 тыс. лет назад), когда человек расселился по всей Земле, существуют данные и оценки разной степени надежности, на основе которых Мак-Эведи и Джоунсом [38] была предложена гиперболическая зависимость (4):

      Рис. 1. Гипербола Мак-Эведи и Джоунса.

      Сравним теорию с этой гиперболой. Для этого сдвинем начало отсчета времени от начала новой эры к неолиту, а численность будем измерять в клаттерах. За точку отсчета на оси времени возьмем 8154 год до н. э. (255*39,75 = 10136, 10136 – 1982 = 8154, 10136 + 39,75 ≈ 10180).

      И для удобства расчетов ищем зависимость от (-t), т. е. отсчитываем время от 8154 года до н. э. в прошлое. Тогда t = 0 – начало неолита, а t = -10180 – точка сингулярности гиперболы демографического роста. С учетом зомби-коэффициента k = 1.1 находим число клаттеров Сети как функцию времени:

      Рис. 2. Зависимость числа клаттеров Сети человека