с рядом развитых стран, уже прошедших свой демографический переход. Но слишком мало остается времени, «хвосты» у этих функций длинные, а логистическая кривая Сети не нужна.
Ведь в 2062 году должен быть собран второй клаттер Сети 4 294 967 296. Сеть всегда выполняет план в приоритетных точках своего роста. В соответствии со вторым законом, феномен сознания связан с Сетью. Те, кто находятся вне Сети представляют «неуправляемую» часть социума. Их доля составляет примерно 9 %, т. е. она невелика; от ее величины очевидным образом зависит способность социума к прогрессивному развитию – это как минимум, и управляемость обществом вообще – как максимум.
Если Сеть выберет сценарий «длинных хвостов», то в конце второго цикла перехода следует ожидать резкого роста людей с больной психикой. Такие явления, как сумасшествие или впадение в кому, можно рассматривать как факт замены Сетью «игрока», а ремиссия и, соответственно, выход из комы – как его возврат.
Возможен еще один сценарий, имеющий меньшие издержки. Если в социуме будут возбуждены колебания прироста численности на множестве подмножеств различных социальных групп – погрешность Сети может быть значительно уменьшена. Чисто схематически все это можно представить так:
Рис. 2. Варианты роста населения мира в процессе демографического перехода согласно теории (схема).
Итог такой: последний цикл Сети, особенно его концовка с продолжением, – время стрессов, роста числа психических и прочих заболеваний, возможно, локальных войн и природных катаклизмов. Численность населения достигнет значения 9.2 ± 0.2 млрд человек и многие тысячелетия меняться практически не будет.
Уравнение Капицы
Пусть имеется сеть, размер которой равен М, т. е. ИС, содержащая М клаттеров. И допустим, что за цикл новый клаттер собрать не удается. Т. е. рассмотрим сначала первый этап роста. На копирование одного клаттера требуется М носителей, и всего за цикл их будет скопировано М2. Если N – полная численность носителей Сети, то:
Рис. 1. Число носителей, идущих на копирование одного клаттера.
Здесь ce(X) – ближайшее целое, меньшее или равное числу X. Прирост численности носителей за цикл равен:
Рис. 2. Прирост носителей за цикл.
К этому разностному уравнению необходимо добавить условие завершение цикла. Как только в процессе итераций число носителей N(t) достигнет значения, достаточного для сборки нового клаттера, нужно сделать подстановку:
Рис. 3. Условие подстановки.
Вот решение этого уравнения в системе MathCAD (здесь τ = 1, время измеряется в циклах):
Рис. 4. Алгоритм решения разностного уравнения.
Зависимость численности носителей от времени получается такой же, как в модели роста клаттеров по циклам U2(C). Если число собранных за цикл клаттеров значительно меньше размера сети (второй этап ее роста), то и в этом случае данное разностное уравнение служит хорошим