для предсказания леса. Так как алгоритм в произвольном порядке выбирает предикторы в каждом разделении, корреляция деревьев будет обязательно уменьшена.
Природа ансамбля случайного леса лишает возможности получить понимание отношения между предикторами и откликом. Однако потому что деревья – типичный основной ученик для этого метода, можно количественно определить воздействие предикторов в ансамбле – определить значимость предикторов модели.
Можно показать, что корреляции между предикторами могут оказать значительное влияние на величину значимости. Например, у неинформативных предикторов с высокой корреляцией с информативными предикторами будет неправильно крупное значение значимости. В некоторых случаях их значимость была больше, чем у менее важных предикторов. Также известно, что количество предикторов, которое берут для классификации в каждом узле дерева, имеет серьезное влияние на величину значимости.
4.7. Усиление (boosting)
Модели с усилением первоначально разрабатывались для проблем классификации и были позже расширены на регрессию. История усиления начинается с алгоритма AdaBoost.
Усиление, особенно в форме алгоритма AdaBoost было мощным инструментом предсказания, обычно выигрывая у любой отдельной модели. Ее успех привлек внимание в сообществе моделирования, и ее использование стало широко распространенным.
Алгоритм AdaBoost четко работал благодаря простому, изящному и очень адаптируемому алгоритму для различных видов проблем. Основные принципы усиления следующие: учитывая функцию потерь (например, квадрат ошибки для регрессии) и слабый ученик (например, деревья регрессии), алгоритм стремится найти аддитивную модель, которая минимизирует функцию потерь. Алгоритм обычно инициализируется с лучшим предположением отклика (например, средний из отклика в регрессии). Вычисляется остаток, а затем модель подгоняется к остаткам с целью минимизации функции потерь. Текущая модель добавлена к предыдущей модели, и процедура продолжается для конкретного количества итераций.
Значимость предикторов для алгоритма усиления является функцией квадрата ошибки. Определенно, уточнение по квадрату ошибки из-за каждого предиктора суммировано в пределах каждого дерева в ансамбле (то есть, каждый предиктор получает значение уточнения для каждого дерева). Затем значение уточнения для каждого предиктора усреднено по всему ансамблю для получения полной величины значимости предикторов.
4.8. Функции R
Приведем некоторые функции, которые могут быть использованы при работе над данным разделом.
Приведено название функции, а в скобках название пакета, в котором функция расположена. Для использования функция необходима загрузка пакета, а если его еще нет, то и установка.
Если названия пакета не приведено – это означает, что функция имеется в базовом пакете и не требуется предварительная загрузка пакета.
lm