Скачать книгу

предлагают семейство адаптивных преобразований. Эту процедуру можно применить вне Rattle к каждому предиктору, имеющими значения, больше нуля.

      2.2. Преобразование групп предикторов

      Эти преобразования действуют на группы предикторов, обычно все рассматриваемого множества. Наиболее значимые методы направлены на решение проблем выбросов и уменьшения размерность данных.

      2.2.1. Преобразования, решающие проблему выбросов

      Мы обычно определим выбросы как наблюдения, которые исключительно далеки от основных данных. При определенных предположениях есть формальные статистические определения выброса. Даже с полным пониманием данных бывает сложно определить выбросы. Однако можно выявить необычное значение, глядя на рисунок. Если одно или более значений предиктора попадает под подозрение, сначала нужно подумать о допустимости этих значений. Необходимо соблюдать особую осторожность и не торопиться удалять или изменять значение, особенно при небольшом объеме выборки.

      Есть несколько предсказательных моделей, которые являются устойчивыми к выбросам. Модели классификации на основе дерева создают разделения учебных данных, и уравнение предсказания – ряд логических операторов таких как, «если предиктор больше чем X, то предсказываем класс Y», таким образом, выброс обычно не имеет исключительного влияния на модель. Машины опорных векторов для классификации обычно игнорируют часть наблюдений набора данных обучения, создавая уравнение предсказания. Исключенные наблюдения могут быть далеко от границы решения и за пределами основных данных.

      Если используемая модель чувствительна к выбросам, то существует преобразование данных, которое может минимизировать задачу – это пространственный знак.

      2.2.2. Снижение объема данных и выделение предикторов (PCA)

      Методы снижения объема данных – другой класс преобразований предикторов. Эти методы сокращают данные, генерируя меньшее множество предикторов, которые стремятся получить большую часть информации из исходных переменных. Таким образом, можно использовать меньше переменных, которые обеспечивают разумную точность для исходных данных. Для большинства методов снижения объема данных новые предикторы – функции исходных предикторов; поэтому, все исходные предикторы все еще необходимы, чтобы создать суррогатные переменные. Этот класс методов часто вызывают экстракцией сигнала или методами выделения предикторов.

      Алгоритм PCA – обычно используемый метод снижения объема данных. Этот метод стремится найти линейные комбинации предикторов, называемых главными компонентами (PC), которые содержат наибольшую возможную дисперсию. Первая PC определена как линейная комбинация предикторов, которая получает большую часть изменчивости всех возможных линейных комбинаций. Затем, последующие PC получены так, что эти линейные комбинации получают остающуюся изменчивость, также будучи некоррелированным