через введение новых понятий, т.к. смысл любых аксиом как раз в их изначальности т.е. они всегда по сути есть границы знаний. Таким образом, аксиомы получают ещё более основополагающий статус, чем до сих пор, когда они ограничивались лишь обоснованием какой-либо конкретной системы. В частности, система аксиом, разработанная итальянским математиком Джузеппе Пеано (Giuseppe Peano), очень близко соответствуют решению задачи построения системы счёта, хотя вот это основное их предназначение никак не разъяснялось, видимо, с намёком на обоснование сущности понятия числа. Научное сообщество воспринимало их только как некую «формализацию арифметики», совершенно не замечая, что эти аксиомы ни коим образом не отражают сущность чисел, а только создают основы для их представления по умолчанию, т.е. через счёт.
Если основное содержание аксиом – это определение границ знаний, относящихся к общепринятым способам представления чисел, то их следует выстраивать как из определения сущности понятия числа, так и с целью обеспечения прочности и устойчивости всего здания науки. До сих пор из-за отсутствия такого понимания способов построения основ знаний вопрос о сущности числа никогда даже и не ставился, а только усложнялся и запутывался. Но теперь, когда он проясняется, причём без каких-либо особенных затруднений, вся наука может получить новый и очень мощный импульс для своего развития. И вот тогда именно на такой прочной основе она приобретает способности с невероятной лёгкостью преодолевать такие сложнейшие преграды, которые в прежние времена, когда понимания сущности числа не было, представлялись науке как совершенно неприступные крепости36.
3.2. Аксиомы арифметики
3.2.1. Аксиомы счёта
Этот путь впервые был проложен в конце XIX столетия аксиомами Пеано37. Мы внесём в них изменения, исходя из нашего понимания сущности числа.
Аксиома 1. Натуральным является число, сложенное из единиц38.
Аксиома 2. Единица является исходным натуральным числом.
Аксиома 3. Все натуральные числа составляют бесконечный ряд, в котором каждое следующее число образуется путём прибавления к предыдущему числу единицы.
Аксиома 4. Единица не следует ни за каким натуральным числом.
Аксиома 5. Если какое-либо предложение доказано для единицы, (начало индукции), и если из допущения, что оно верно для натурального числа N, вытекает, что оно верно также для следующего за N натурального числа, (индукционное предположение), то это предложение будет верно для всех натуральных чисел.
Аксиома 6. Кроме натуральных могут существовать и другие производные от них числа, но только в том случае, если они обладают всеми без исключения базовыми свойствами натуральных чисел.
Первая аксиома является прямым следствием определения сущности числа, поэтому у Пеано её просто не могло быть. Теперь эта первая аксиома передаёт смысл определения понятия числа всем остальным аксиомам.
Вторая, четвертая и пятая аксиомы