интеллектом и экономикой. На протяжении десятилетий наука об искусственном интеллекте развивалась медленно, но устойчиво, и только в последнее время начала бурно прогрессировать, позволяя быстро внедрять научные достижения. Задачи технического характера, связанные с победой машины над человеком в игре го, мне хорошо знакомы. Будучи аспирантом Университета Карнеги – Меллона, я занимался разработками в области ИИ под руководством одного из первых его исследователей – Раджа Редди. В 1986 году я написал первую программу[5], победившую чемпиона мира по игре «Отелло» (это упрощенная версия го, в которую играют на доске, разлинованной на 88 клеток). В то время я мог по праву гордиться таким результатом, но сама технология не была настолько зрелой, чтобы найти применение где-либо, кроме простых настольных игр.
То же самое можно сказать и о победе компьютера Deep Blue, созданного IBM, над чемпионом мира по шахматам Гарри Каспаровым в матче 1997 года, который называли «последним рубежом обороны человеческого мозга». После него многие забеспокоились, не пойдут ли роботы войной на человечество, но реальные последствия ограничились подорожанием акций IBM. Искусственный интеллект еще долго находил весьма ограниченное применение, и ученым понадобились десятилетия, чтобы сделать действительно фундаментальный шаг вперед.
Deep Blue действовал «грубой силой», полагаясь в основном на аппаратное обеспечение, которое позволяло быстро просчитывать и оценивать последствия каждого хода. Поэтому, чтобы дополнить его программное обеспечение направляющими эвристиками, понадобилась помощь сильнейших реальных шахматистов. Да, победа была выдающимся достижением инженерной мысли, но в ее основе лежала давно устоявшаяся технология, которая работала только при соблюдении множества условий. Заберите у Deep Blue геометрически простую квадратную шахматную доску восемь на восемь квадратов, и эта машина уже не покажется вам такой умной.
Однако теперь все изменилось. Во время игры Кэ Цзе против AlphaGo состязание шло в пределах доски для го, но было связано с серьезными изменениями в реальном мире. Победа программы породила настоящую лихорадку ИИ в Китае.
Работа AlphaGo основана на технологии глубокого обучения – новаторском методе в области искусственного интеллекта, позволяющем развивать когнитивные способности машин. Программы, основанные на глубоком обучении, теперь могут лучше, чем люди, идентифицировать лица, распознавать речь и выдавать кредиты. На протяжении десятилетий до революции искусственного интеллекта всегда оставалось каких-нибудь пять лет. Но с появлением глубокого обучения эта революция, наконец, началась. Она открыла дорогу эре небывалого повышения производительности, но также и масштабных потрясений на рынках труда, которые повлекут за собой глубокие социально-психологические последствия для людей, – ведь искусственный интеллект будет вытеснять их с рабочих мест. В матче с Кэ Цзе его соперниками стали не роботы-убийцы, управляемые ИИ, которыми нас давно пугают. Это были демоны