such open passage; and we have observed that roots commonly run
down the old burrows of worms.*
When a radicle is placed in a horizontal or inclined position, the
terminal growing part, as is well known, bends down towards the centre of
the earth; and Sachs* has shown that whilst thus bending, the growth of the
lower surface is greatly retarded, whilst that
* See, also, Prof. Hensen's statements ('Zeitschrift für Wissen, Zool.,' B. xxviii. p. 354, 1877) to the same effect. He goes so far as to believe that roots are able to penetrate the ground to a great depth only by means of the burrows made by worms.
* 'Arbeiten des bot. Inst. Würzburg,' vol. i. 1873, p. 461. See also p. 397 for the length of the growing part, and p. 451 on the force of geotropism. [page 73]
of the upper surface continues at the normal rate, or may be even somewhat increased. He has further shown by attaching a thread, running over a pulley, to a horizontal radicle of large size, namely that of the common bean, that it was able to pull up a weight of only one gramme, or 15.4 grains. We may therefore conclude that geotropism does not give a radicle force sufficient to penetrate the ground, but merely tells it (if such an expression may be used) which course to pursue. Before we knew of Sachs' more precise observations we covered a flat surface of damp sand with the thinnest tin-foil which we could procure (.02 to .03 mm., or .00012 to .00079 of an inch in thickness), and placed a radicle close above, in such a position that it grew almost perpendicularly downwards. When the apex came into contact with the polished level surface it turned at right angles and glided over it without leaving any impression; yet the tin-foil was so flexible, that a little stick of soft wood, pointed to the same degree as the end of the radicle and gently loaded with a weight of only a quarter of an ounce (120 grains) plainly indented the tin-foil.
Radicles are able to penetrate the ground by the force due to their longitudinal and transverse growth; the seeds themselves being held down by the weight of the superincumbent soil. In the case of the bean the apex, protected by the root-cap, is sharp, and the growing part, from 8 to 10 mm. in length, is much more rigid, as Sachs has proved, than the part immediately above, which has ceased to increase in length. We endeavoured to ascertain the downward pressure of the growing part, by placing germinating beans between two small metal plates, the upper one of which was loaded with a known weight; and the [page 74] radicle was then allowed to grow into a narrow hole in wood, 2 or 3 tenths of an inch in depth, and closed at the bottom. The wood was so cut that the short space of radicle between the mouth of the hole and the bean could not bend laterally on three sides; but it was impossible to protect the fourth side, close to the bean. Consequently, as long as the radicle continued to increase in length and remained straight, the weighted bean would be lifted up after the tip had reached the bottom of the shallow hole. Beans thus arranged, surrounded by damp sand, lifted up a quarter of a pound in 24 h. after the tip of the radicle had entered the hole. With a greater weight the radicles themselves always became bent on the one unguarded side; but this probably would not have occurred if they had been closely surrounded on all sides by compact earth. There was, however, a possible, but not probable, source of error in these trials, for it was not ascertained whether the beans themselves go on swelling for several days after they have germinated, and after having been treated in the manner in which ours had been; namely, being first left for 24 h. in water, then allowed to germinate in very damp air, afterwards placed over the hole and almost surrounded by damp sand in a closed box.
Fig. 55. Outline of piece of stick (reduced to one-half natural size) with a hole through which the radicle of a bean grew. Thickness of stick at narrow end .08 inch, at broad end .16; depth of hole .1 inch. We succeeded better in ascertaining the force exerted transversely by these radicles. Two were so placed as to penetrate small holes made in little sticks, one of which was cut into the shape here exactly copied (Fig. 55). The short end of the stick beyond the hole was purposely split, but not the opposite [page 75] end. As the wood was highly elastic, the split or fissure closed immediately after being made. After six days the stick and bean were dug out of the damp sand, and the radicle was found to be much enlarged above and beneath the hole. The fissure which was at first quite closed, was now open to a width of 4 mm.; as soon as the radicle was extracted, it immediately closed to a width of 2 mm. The stick was then suspended horizontally by a fine wire passing through the hole lately filled by the radicle, and a little saucer was suspended beneath to receive the weights; and it required 8 lbs. 8 ozs. to open the fissure to the width of 4 mm.— that is, the width before the root was extracted. But the part of the radicle (only .1 of an inch in length) which was embedded in the hole, probably exerted a greater transverse strain even than 8 lbs. 8 ozs., for it had split the solid wood for a length of rather more than a quarter of an inch (exactly .275 inch), and this fissure is shown in Fig. 55. A second stick was tried in the same manner with almost exactly the same result.
Fig. 56. Wooden pincers, kept closed by a spiral brass spring, with a hole (.14 inch in diameter and .6 inch in depth) bored through the narrow closed part, through which a radicle of a bean was allowed to grow. Temp. 50o - 60o F.
We then followed a better plan. Holes were bored near the narrow end of two wooden clips or pincers (Fig. 56), kept closed by brass spiral springs. Two radicles in damp sand were allowed to grow through these holes. The [page 76] pincers rested on glass-plates to lessen the friction from the sand. The holes were a little larger (viz..14 inch) and considerably deeper (viz..6 inch) than in the trials with the sticks; so that a greater length of a rather thicker radicle exerted a transverse strain. After 13 days they were taken up. The distance of two dots (see the figure) on the longer ends of the pincers was now carefully measured; the radicles were then extracted from the holes, and the pincers of course closed. They were then suspended horizontally in the same manner as were the bits of sticks, and a weight of 1500 grams (or 3 pounds 4 ounces) was necessary with one of the pincers to open them to the same extent as had been effected by the transverse growth of the radicle. As soon as this radicle had slightly opened the pincers, it had grown into a flattened form and had escaped a little beyond the hole; its diameter in one direction being 4.2 mm., and at rightangles 3.5 mm. If this escape and flattening could have been prevented, the radicle would probably have exerted a greater strain than the 3 pounds 4 ounces. With the other pincers the radicle escaped still further out of the hole; and the weight required to open them to the same extent as had been effected by the radicle, was only 600 grams.
With these facts before us, there seems little difficulty in understanding how a radicle penetrates the ground. The apex is pointed and is protected by the root-cap; the terminal growing part is rigid, and increases in length with a force equal, as far as our observations can be trusted, to the pressure of at least a quarter of a pound, probably with a much greater force when prevented from bending to any side by the surrounding earth. Whilst thus increasing in length it increases in thickness, pushing away the damp [page 77] earth on all sides, with a force of above 8 pounds in one case, of 3 pounds in another case. It was impossible to decide whether the actual apex exerts, relatively to its diameter, the same transverse strain as the parts a little higher up; but there seems no reason to doubt that this would be the case. The growing part therefore does not act like a nail when hammered into a board, but more like a wedge of wood, which whilst slowly driven into a crevice continually expands at the same time by the absorption of water; and a wedge thus acting will split even a mass of rock.
Manner in which Hypocotyls, Epicotyls, etc., rise up and break through the ground.—After the radicle has penetrated the ground and fixed the seed, the hypocotyls of all the dicotyledonous seedlings observed by us, which lift their cotyledons above the surface, break through the ground in the form of an arch. When the cotyledons are hypogean, that is, remain buried in the soil, the hypocotyl is hardly developed, and the epicotyl or plumule rises in like manner as an arch through the ground. In all, or at least in most of such cases, the downwardly bent apex remains for a time enclosed within the seed-coats. With Corylus avellena the cotyledons are hypogean, and the epicotyl is arched; but in the particular case described in the last chapter its apex had been injured, and it grew laterally through the soil like a root; and in consequence of this it had emitted two secondary shoots, which likewise broke through the ground as arches.
Cyclamen