Charles Darwin

The Power of Movement in Plants


Скачать книгу

that many seedlings are protected from frost, but by a widely different process, namely, by being drawn beneath the surface by the contraction of their radicles. We may, however, believe that the extraordinary manner of germination of Megarrhiza has another and secondary advantage. The radicle begins in a few weeks to enlarge into a little tuber, which then abounds with starch and is only slightly bitter. It would therefore be very liable to be devoured by animals, were it not protected by being buried whilst young and tender, at a depth of some inches beneath the surface. Ultimately it grows to a huge size.

      Ipomoea leptophylla.—In most of the species of this genus the hypocotyl is well developed, and breaks through the ground as an arch. But the seeds of the present species in germinating behave like those of Megarrhiza, excepting that the elongated petioles of the cotyledons are not confluent. After they have protruded from the seed, they are united at their lower ends with the undeveloped hypocotyl and undeveloped radicle, which together form a point only about .1 inch in length. They are at first highly geotropic, and penetrate the ground to a depth of rather above half an inch. The radicle then begins to grow. On four occasions after the petioles had grown for a short distance vertically downwards, they [page 84] were placed in a horizontal position in damp air in the dark, and in the course of 4 hours they again became curved vertically downwards, having passed through 90o in this time. But their sensitiveness to geotropism lasts for only 2 or 3 days; and the terminal part alone, for a length of between .2 and .4 inch, is thus sensitive. Although the petioles of our specimens did not penetrate the ground to a greater depth than about ½ inch, yet they continued for some time to grow rapidly, and finally attained the great length of about 3 inches. The upper part is apogeotropic, and therefore grows vertically upwards, excepting a short portion close to the blades, which at an early period bends downwards and becomes arched, and thus breaks through the ground. Afterwards this portion straightens itself, and the cotyledons then free themselves from the seed-coats. Thus we here have in different parts of the same organ widely different kinds of movement and of sensitiveness; for the basal part is geotropic, the upper part apogeotropic, and a portion near the blades temporarily and spontaneously arches itself. The plumule is not developed for some little time; and as it rises between the bases of the parallel and closely approximate petioles of the cotyledons, which in breaking through the ground have formed an almost open passage, it does not require to be arched and is consequently always straight. Whether the plumule remains buried and dormant for a time in its native country, and is thus protected from the cold of winter, we do not know. The radicle, like that of the Megarrhiza, grows into a tuber-like mass, which ultimately attains a great size. So it is with Ipomoea pandurata, the germination of which, as Asa Gray informs us, resembles that of I. leptophylla.

      The following case is interesting in connection with [page 85] the root-like nature of the petioles. The radicle of a seedling was cut off, as it was completely decayed, and the two now separated cotyledons were planted. They emitted roots from their bases, and continued green and healthy for two months. The blades of both then withered, and on removing the earth the bases of the petioles (instead of the radicle) were found enlarged into little tubers. Whether these would have had the power of producing two independent plants in the following summer, we do not know.

      In Quercus virens, according to Dr. Engelmann,* both the cotyledons and their petioles are confluent. The latter grow to a length "of an inch or even more;" and, if we understand rightly, penetrate the ground, so that they must be geotropic. The nutriment within the cotyledons is then quickly transferred to the hypocotyl or radicle, which thus becomes developed into a fusiform tuber. The fact of tubers being formed by the foregoing three widely distinct plants, makes us believe that their protection from animals at an early age and whilst tender, is one at least of the advantages gained by the remarkable elongation of the petioles of the cotyledons, together with their power of penetrating the ground like roots under the guidance of geotropism.

      The following cases may be here given, as they bear on our present subject, though not relating to seedlings. The flower-stem of the parasitic Lathraea squamaria, which is destitute of true leaves, breaks through the ground as an arch;** so does the flower-

      * 'Transact. St. Louis Acad. Science,' vol. iv. p. 190.

      ** The passage of the flower-stem of the Lathraea through the ground cannot fail to be greatly facilitated by the extraordinary quantity of water secreted at this period of the year by the subter- [[page 86]] ranean scale-like leaves; not that there is any reason to suppose that the secretion is a special adaptation for this purpose: it probably follows from the great quantity of sap absorbed in the early spring by the parasitic roots. After a long period without any rain, the earth had become light-coloured and very dry, but it was dark-coloured and damp, even in parts quite wet, for a distance of at least six inches all round each flower-stem. The water is secreted by glands (described by Cohn, 'Bericht. Bot. Sect. der Schlesischen Gesell.,' 1876, p. 113) which line the longitudinal channels running through each scale-like leaf. A large plant was dug up, washed so as to remove the earth, left for some time to drain, and then placed in the evening on a dry glass-plate, covered with a bell-glass, and by next morning it had secreted a large pool of water. The plate was wiped dry, and in the course of the succeeding 7 or 8 hours another little pool was secreted, and after 16 additional hours several large drops. A smaller plant was washed and placed in a large jar, which was left inclined for an hour, by which time no more water drained off. The jar was then placed upright and closed: after 23 hours two drachms of water were collected from the bottom, and a little more after 25 additional hours. The flower-stems were now cut off, for they do not secrete, and the subterranean part of the plant was found to weigh 106.8 grams (1611 grains), and the water secreted during the 48 hours weighed 11.9 grams (183 grains)—that is, one-ninth of the whole weight of the plant, excluding the flower-stems. We should remember that plants in a state of nature would probably secrete in 48 hours much more than the above large amount, for their roots would continue all the time absorbing sap from the plant on which they were parasitic. [page 86]

      stem of the parasitic and leafless Monotropa hypopitys. With Helleborus niger, the flower-stems, which rise up independently of the leaves, likewise break through the ground as arches. This is also the case with the greatly elongated flower-stems, as well as with the petioles of Epimedium pinnatum. So it is with the petioles of Ranunculus ficaria, when they have to break through the ground, but when they arise from the summit of the bulb above ground, they are from the first quite straight; and this is a fact which deserves notice. The rachis of the bracken fern (Pteris aquilina), and of some, probably many, other ferns, likewise rises above ground under the form of an arch. No doubt other analogous instances could be found by careful search. In all ordinary cases of bulbs, rhizomes, [page 87] root-stocks, etc., buried beneath the ground, the surface is broken by a cone formed by the young imbricated leaves, the combined growth of which gives them force sufficient for the purpose.

      With germinating monocotyledonous seeds, of which, however, we did not observe a large number, the plumules, for instance, those of Asparagus and Canna, are straight whilst breaking through the ground. With the Gramineae, the sheath-like cotyledons are likewise straight; they, however, terminate in a sharp crest, which is white and somewhat indurated; and this structure obviously facilitates their emergence from the soil: the first true leaves escape from the sheath through a slit beneath the chisel-like apex and at right angles to it. In the case of the onion (Allium cepa) we again meet with an arch; the leaf-like cotyledon being abruptly bowed, when it breaks through the ground, with the apex still enclosed within the seed-coats. The crown of the arch, as previously described, is developed into a white conical protuberance, which we may safely believe to be a special adaptation for this office.

      The fact of so many organs of different kinds—hypocotyls and epicotyls, the petioles of some cotyledons and of some first leaves, the cotyledons of the onion, the rachis of some ferns, and some flower-stems—being all arched whilst they break through the ground, shows how just are Dr. Haberlandt's* remarks on the importance of the arch to seedling plants. He attributes its chief importance to the upper, young, and more tender parts of the hypocotyl

      * 'Die Schutzeinrichtungen in der Entwickelung der Keimpflanze,' 1877. We have learned much from this interesting essay, though our observations lead us to differ on some points from the author. [page 88]

      or epicotyl, being thus saved from abrasion and pressure