Р. И. Федотова

Основы изобразительного искусства


Скачать книгу

острым, но по сути, это кривая линия – и она не должна сводиться к точке.

      Рис. 4.4

      На рис. 4.5 показано, что получается, когда вы рисуете вазу, имеющую форму цилиндра. Оба её края, и верхний и нижний, представляют из себя эллипсы (часть нижнего не видна), разные по форме. Тот эллипс, который находится дальше от линии горизонта, всегда будет более полным, чем тот, который находится ближе к линии горизонта.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAASAAAATgAAAAAAAABgAAAAAQAAAGAAAAABUGFpbnQuTkVUIHYzLjUuMTAA/9sAQwACAQECAQECAgICAgICAgMFAwMDAwMGBAQDBQcGBwcHBgcHCAkLCQgICggHBwoNCgoLDAwMDAcJDg8NDA4LDAwM/9sAQwECAgIDAwMGAwMGDAgHCAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgByQKKAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/fA/MKqasWSzkC8F/l/M4q0GOeRiqepHzLu3jzwW3GvGqRsax3LEcaxQqoGNoAqRFIzS4B684pekROMVdKPvCb0MjVSHlbAJIqhJA4BYhjxWjOpDEkAluvFQSr8pOeM4x61rFltFKMgk5GMdfrUbxFtz8gkf/qq3BbFdxAzuOcUyS2YjBxwc/lWqavYRBbAAhT3HBPb/ADmkklEakkEgd+/FWEjA2ktwBxzUdzbCVSuSDjPFaXBMhE7G2B2AA8DjpUE0RBRcjHf3q9JGpUg5wvAA4qMQgKWIJPbNaJoVimYl84BnAIHaqsUDbpQSzAjoeKttaxoQWByTn2qZLYKcAAlveteayJtcy5LUrJGcHOc+oFRlS4fIYAHJ9615LYSsgHKgkcUrWKkMuAM+/NUqiE4mKk+64CkkYH6ZqKeQxsdpAA4x9a1k0tBI7IMDHBHWqM2lAbnwwbvzx9a3hKLZm0yr5rdASdvHSnteOjFgCwbr7cVYhschgSQOuaJ7EooAOWPA96bavYLMYdTLKNuSVP4GlS9YSFiwGTk+1OksUKMW4P8AKozEWZSFJDd6lRiVdlgX7MTtYYB544qs7ebIXLcsefWhVMEmCQBz+dRSR713Iwznp1xRGmlsJyYxjIko6lQeeOtWAjDI3MwOPoKUI0ah2AA6nIzSzTIU3I2AevrmtGr7EpE32hLURqwABGMmmajdIqgL802M7e/4+lUZ7g3tw0SLnaRz2H/16kFoFjIySRwT3NQqKTuynN2KM+nPc3iz3DBiVyEHCp/9epra2AOChYHgk5qwYGExUEEAYHqas21kr46g1c6mhMUyD+z1RS4JBU5+tXYbYrjjtVmHTVSB+c7jyTzUbSIqugzkdSOciuZzctinG2obNuB8uSRx/SnQgeeoLAAHJqu9ysgUjjB6+pqONy52qCxXOce9NUrrUXN2JryVDK20kqehqoVZSQSAe5/rVpYz5AZRyx78VXvLYxxGQsAAOep6VUIrYG29StNdfMqlge2e1Q23lm5DEtkHnscVVnjmkuCYVVCefn5x+FVHimRnMtw6A9Sg24/rXXGhFq1yG2dVqsVvb2oKsoOOD3rhdXvEe8ZYTvHQleQDzx/OrlxAtzFGWaSQkDGSSCPxqzFpcRiQAAl84XFa0Kapat3BtsybK0n+VgwCHsecVZaCUIFNzgkHIA4Faf2aOOPaVCuR1XnFZWqo0LEqQY04xnk961jLmY0rEGopJGiokshDDkgd6gs7O7lDbi6pGDy2TU9ncw3twCwKEAfKOT6f5+taTajFaNFGFcE/Kue5HbmrlJpWSKstytBpDhcAkNIeS3Iz69akfQwEDM/zA4Pv7VbW/eOBmeJwCcDGCazb/UzDbqxacuxyAhAJ5wf1rJc7GkizFpB8wEyKVB5Ap8NrFEGYshVeTk9KqLrgSbYUuGfBAJXIOP8AIqtJrgjd0FvMA6j6H601CTA17a7tUymVYgZzgjB9Kjlmhikd03kdQCwAwRWE2ovJcKqwyqHTrjAP1rTtQJrQrkkE8k5pulbW4bl2XVE8oFVVSw4LmoLnXFgWM5AZjjgZIqjLpccd3kSOVH8IfC49ade+GLPVEVmdlQAdCQD7fShU4dQaZL/wkcUTszSkqo/unk0o16EqXKyMAQMhScVE/hWwaNS0crCMnJLk8/nTv7It4rSUYcOTuTcSB/nFNxgwSZb/ALcitkUOrFnHHXjNEGr29xb48htxOMY5xz/hVVLCG8CLJIWZQPQgHNX7bRoY1UB5HHrn/PeocIIepWGukExrasoGRkjr6U2LxA1xHg2pRg2GJwc1oT6UBICVxjvjp/nNMTRUHzRSgmX73OfYmleArMy3vVDAFGRScdAKkW8kd/8AVybS3XIOMdqtPoYaNlYBnXoD/Kp4tGCWaBFCyJ941TnGwcrM+S6keLBRwQ2RnHPHSst727voWhhieJiTmRxgenA/CusXTtkJLBWRuMY6moRoplu0wwAXjoOaz9okNRMHyXS2KLGdwGOcc/rUdnpVzJdhwqvGxOQWx2rqk0NAwG0Haeo5PP4VPb6FHbyBEyQT69P8/wBaPrKSsL2Zz9rZM8W0q4CgZwRUxtmhZS6kkKfTn3P+e9dE+lRtlUAB+8fQ8dac+lfaQwUhgo/P/Dis3iFctwOM1DSnM6MkS7GHXjqPxqpBDKLgM0chCHBHTnHau+OlqY0TYSifd74/z/SkOmovIYMzcfd561osX0sS6Zw7W0mWk8sKGAzu4444/nUc1ohkAZXRycAcnPtn8679dORBIWQAkdeuahOiwhi3lggilHGLsDos42zsSshJhRTH93nkjpn8KbLA3nKoU7Sck4PGeldu+mIlthY3yey4/wAaedNQIB5ZYe4/XpU/XOth+yOHbR2kgZlIVSPujg5qe3tHMUcRWRgoHOMZ/wA4rtho8KoWEe454BAIFN+xouSYRtPyg7Pu0vrl+g1SOL+xhWKndgjBOeKhjBglCq8p28dTx9a666slZyDCOBnIH+eaoXXhxZ1JRCATlsdSaqNdNe8DpmG9x9ogeI7iGyMHkYq7pNyLEKigMMdyc1YsdBkAYqJAV9qbJ4buDcq+VwnQAHmk5wd430BQe6LkF0FY7kweenYetW4WSYghRtOepqKz0+5hiz5YYfTHNTMs0MeWiIGMZXBxxXFUSbsjRRKV7GWYklNoHTuTURIycqSfYDFTyPFMwZgRk9R1pvlxnneefrXJKOpokz2BjzwKpSL5mrpkEhV69qutk1TublbKQFgWcjgevvXn1U7pGUC5TnYCEA96ppcmaRSxwPbipZbgPhQQAB6VpFNJiaIbhfMjYgYIGcmqj/JJggbQP1xViefKts3EjtjGarSXAJwybt3XFOMGXcSQgMCRyaimkGXBABPANNvJwoBUruHr0qjPeksPl3sxyfatoUmxNlt3wgIHzdhTBIY4iWIVgKgmv0eIqjsCvJP92qgumnlYlyyrwRx6V0Ro9yGy+SrEuWBI64PGah8/exAySpxxVX7O9uBsBZSfmAzn/PFQyX5hYIMfPznpitlSvsDkXvOUOVYDCnHTpSfaOQAyg4/AVmxXjSudxYAA5PUD/GpLp1CEEjBGB15odKzsCl1NGW7jhgDFgCTj61D9uSWEEkKT+NZ6qrR7ZCuAfwFKjJJIVicMF+9jgZpqkgcmaIug0ZCk4GPypJp0lAQjDHPasqfUNkhQZViPvZ4+lRnVmC5IG8HjPBrRUHuTzmiG8odQxI79R7Uk0h2KFZFYHnPNVW1MLAQ524wTznPPSoFupbhFlVkK/TOapU2S5FmRTLdFGdRjlcfxf4VHe3HkkgOpA9OSaqwiSN2JbG6liiZNzHITtzk5q1BLqJSuOkvFumIww2jvUMcwjkKrIu1+gxzU6Qs0QJyxPPPNNFmqsrdx78CqjyonUerELwDkH86rQsW2RKCrnI56Crt7dRRQsmCGXknFQ6XILi3MjKFY+vFEZe7exTWtiWy09bfcEByOvualtbELGQSOeganW5QBQrKQvGdw4pZrqJQNzxEjncXANYtyZSihYrLZMW64Oc9atRWnlRb9xGenH0rNk8QxQthnhUBuu8HNLP4nVHjAZAvIOFOKmVOb6DTSNJmYwENgscdaqiMgnC7mPFVE1cXkrAS5KdedoAqtc6qASquJW3YJQk/5/wDrURoSTsDZowWQcshYLk7sHg1ZitVikOMgEZz1rHgzIA5SQkDjg81GmpXVsQBHMA3HAPHNaOm3pchLyN64cwW65XIPI+tVbiYTRBX/ANXnBFJHrKGBVlYeYnUFTkGo7m8ikjBEignnHT+dZxi76oZQu4WVT5TAhuPmODWdceZljIjFR6DcP0rWnuIxEWDrgHnnpVe/kg3oyTREHtnNdcJNEJGO2rNGQqRyMF7bSAPz6VnX/io2TvHuxIBkA8fhW+LZQ8m2XYW4ZlIBPP8AhVWbwnYS3ZM5MrSdXZCxbr7V0RnBboOVnH3Pi6ad3Nu8krRcMq8EH0rIutV1W9sn3kwSyLnbksy89MjjNehweENIsUlFrGxkkJOQCOT3zVfUtBAmVIFdkOGZcYzXRDEQv7qDke7Oc8BG7tdNSW8y8jtgPtwdobC5I/Oute6AiMhQFw4AI6n3qsPDpe3YuCq4+UAng8flS2enuQqMCrRn2y9Z1JKTci0mjUF6tzCpBVWAweM1Wu4rad1UwlmbkMRgj2p8cLQQBWAWQHhgOPpU/nPdKGIBdAAfQ1itNh2My92T3wRUCkkhTn86ZFpzG6lZ23KFwMjA64p2q2txc3qtEoRon3ZA5x6VZtZZ5oU3jawJXrjP1qk9NBtCw6Mvmh487D8vA7/5zTVthp7yO4MxYhdo5Ye5q1HMLO1CZ27eRjPNMspoJnklYlm6DPr/AJ9anmeo7DY7EPMhLRsFUgk96hufItdqhtzHqBzx1/KrySK5CRgZIxjcCKS40tLlYwu0MMHoCaSnZ6hylOK6jkiVAhUOccDpz/jRdQgwZBcNj5SeO/WtOz01Y5EVnYjPPy9fb8q1YtLt1jUNKQzdARwBUTrRiCicqmnN5asFbcVG5gevsKvWVjInlvIrELwOvB989a6NdJtyQfOCg47dB/Q0l9p1ssSg3BGDk49ay+sp6FqBkTWE1wWEcTlGIwQRgiprbwteRqoJGcHBLcc9a1LS3SJm23IYL8uGOQKtx3RYFRPGwXjkde+BWMq0tolKK3MeLw3OJFDuqsOp65pT4dbdiSVSFIB4rSknO0sbiJSeM9/51SluRuybiIiQ5OMjA9aFObCyF/sVrqXYXcBMclcD1wM9asRaPFbkKHO1ckngZqm95LcyHy5VU4zj/wDXUI3MwXz1LHk89qjkk92CtuaosLbywGZmUDrng0xILZcnqQeec1VEVzDGdkbkqcDBBpgt7yUKVOw7sEFutJQ/vAzTgEEchJCkdO54/wD1VMXjt2OAg3njjH0rK+zXmMLOqlRgjAzn/Oaa8V2rACWNwO4YDvU+zT6gmzYnMMa7dpLMPTpVaSeGHy8rkMOynk1VVLu43MJA7KfmGM5FVp7i5jkSNWO5xkZXp7dacafS4OxqRywyRsRG6kA/SoX1SESEBHPOB04FVY11JItoaIK3680+Cyu2J3pGQBj6Hv0o9nFbsdy49yky4CnBPQinidAP3Yyf6ZpgiKAKdpIABGf0pjBnJQIFbPUjIqLIEyeVykZLkMQeAOtIl2ZyAAAfXPNQXKTcAhWKcelMtxJGhVipVep6EVSgrBckKM7MM8g+/SnpGqrwQTjkjvVSa7a3jLkDG7AOcenf6moLm5n58obSg/uk5OKHTbFc0RGI8IvY84HSp2sEkcHbjPBBFZ0d64IZlJJGT8vWrUGobwFC/Mvp24rJ05LUpNFpbNQSxJYdhjpVS/RBuABAY+tTHWSdy4Jx6dP8/wCNU7i+eRSdoJ9+9YuDvdl3SMXU02blAG3PPTFUSoycKmPpWpchJmPmukZY87uAfpVb+zrbveQZ/wCA1q5JaMSR6xezi3tncHkdOO9c7eao005dzyPTtW7rC5snBJABH864i/uDFcHJP1/z71nQoqbuc3NZHRQ344UyEMTj60TaicZIIx0PXPOKw7G/LAAtz0HapvtaQnG99p/xraWHGpGn9qkeB2X5jnjPeolkkkkCnAPfB/KqtrchSQWZQD8vFSLemOQGQqFfoR1HSh097IEyG8DGQEsVwc+30qFpSshYsxPYgdP8mi4vI57lkDsQfbAAqOCIIzgAhRjFaxjpqS3roWF2JE5zkuM8YH41TWAFtxcxjO4Y5z/kVZfYFAIUkcYPeo/tMYYKCGI46ZqkuwMeqybSwY4C9eeT/WszXnlMaJAQkgxlsfd961RKBGeSQ3YdqwdVhubtnCsqqvGMk5rWive1InsOa/ttPtG3yliwGQOSKydS8YeVdgxwF/K6ZPAqvd6TexoCEVtxy23nNUL60uIN7NE2COeRkV206UL3buQ5EkXjW81hmDL5KkkbBgnHrmnW4uY5JDFM5d8cM3FZ1gwWUMECEcnIxn8fxq1DM734