станем углубляться в математические формулы и сложнейшие доказательства Ляпунова, поскольку они доступны весьма узкому кругу избранных. По признанию самих математиков, проблема устойчивости движения принадлежит к категории труднейших задач естествознания. Во всяком случае, докторская диссертация Александра Михайловича «Общая задача об устойчивости движения» (1892) оказалась крепким орешком даже для таких выдающихся математиков, как профессор Н.Е. Жуковский и профессор Б.К. Млодзеевский, выступивших оппонентами.
А.М. Ляпунов
При создании теории автор исходил из трех главных предпосылок: отклонения параметров движения принимались бесконечно малыми, возмущенное движение рассматривалось при отсутствии возмущающих сил и на бесконечно большом интервале времени. Что же получил математик в итоге?
Если коротко, Ляпунов представил результаты интегрирования некоторых систем линейных и нелинейных обыкновенных дифференциальных уравнений, привел доказательства существования асимптотических и периодических решений, а также доказал «теорему о неустойчивости движения в случае, когда силовая функция сил, действующих на систему, не есть максимум, икогда это обнаруживается ее квадратичной формой в разложении вблизи положения равновесия». К слову сказать, эту теорему, как и вообще проблему устойчивости движения, тщетно пытались доказать лучшие математики мира, от Ж. Лагранжа до А. Пуанкаре, и когда ее в 1897 г. опубликовали в «Journal des mathematiques», А.М. Ляпунов стал «первоклассным геометром» и знаменитостью в научном мире.
Помимо математики и механики, теория Ляпунова используется еще и в химии, термодинамике, синергетике и многих других науках. На ней базируется вся современная техника: тяжелое, общее, а в недавнем прошлом – и среднее машиностроение, судо-, авиа-, автомобилестроение, архитектура, строительство сооружений и т. д.
Сегодня немыслимо что-либо конструировать, не определяя зависимость режима работы изделия от величины допусков на его изготовление и от воздействия незначительных возмущающих сил при эксплуатации, поскольку именно они влияют в первую очередь на динамические характеристики современных двигателей, на верность траектории космических аппаратов, на безопасность транспорта, на точность попадания снарядов и ракет.
Устойчивость самолета, то есть его способность автоматически, без вмешательства летчика, возвращаться в исходное, начальное положение во время полета, если какая-либо внешняя причина вывела его из этого положения, является одним из главных технических требований при конструировании летательного аппарата. Задача о динамической устойчивости полета самолета решается как частный случай общей задачи механики об устойчивости движения по Ляпунову.
При строительстве зданий теория устойчивости позволяет получать множество расчетных моделей в связи с появлением новых материалов, усложнением воздействий сейсмических,