на расстояние s часы, синхронизированные ещё до начала опыта. И тогда вышеприведённый способ синхронизации уже не годится. В этом опыте нам придется двое часов расположить прежде в начале координат и запустить их одним начальным (нулевым) импульсом. После этого одни из часов сдвинуть по координате на расстояние s (не вмешиваясь в их работу). При этом в часах к истинному времени автоматически будет добавляться слагаемое переноса, которое при измерениях следует вычитать из показаний часов.
1. 6. Одновременные события
Рис. 1. 3
Одновременность событий поясняется на рис. 1. 3. Здесь в координатах XOt изображена зависимость от координаты слагаемого переноса x/Ve. Это прямая OC, наклонённая к оси OX под некоторым углом α, для которого tgα = 1/Ve. Назовем прямую OC прямой синхронизации. Прямая AB, параллельная прямой синхронизации замечательна тем, что события расположенные на ней одновременны, так как для точек этой прямой истинное время одинаково (например, tA = tB). Пусть теперь часы двигаются вместе с подвижной системой XIOItI вдоль оси OX. При этом прямая синхронизации (теперь уже OICI) будет сдвигаться параллельно прямой OC, а значит и параллельно прямой AB, а потому tIA = tIB. Из этого следует, что если в одной системе координат события A и B одновременны, то они будут одновременны и в другой системе координат.
Ввиду важности понятия одновременности остановимся на этом подробнее. Рассмотрим высказывание: пусть в момент времени t координаты точки равны x,y,z. В мире математики это высказывание есть не что иное, как определение неявной функции четырех переменных в виде F(x,y,z,t) = 0. Однако в мире физики это высказывание можно трактовать как угодно, если не сделать дополнительного соглашения (между физиками и математиками). Каково должно быть это соглашение? Оно должно быть таково, чтобы высказывания физика и математика относительно реального мира были тождественны. Это следующее соглашение: отметки на часах о времени события, а также отметки на координатных осях о положении точки должны делаться за время равное нулю (далее кратко, нуль – соглашение). Это соглашение необходимо и полезно, потому что теперь математический аппарат приобретает физический смысл. Это соглашение в неявной форме всегда присутствует в «правильных» формулах физики.
Однако сторонник теории относительности полагает, что отметки на осях координат можно делать за время равное нулю, а отметки на часах о времени события нельзя сделать за время равное нулю. Как он это узнал? Ведь материальная точка может находиться на очень большом удалении не только от часов, но и от осей координат. Эта непоследовательность (а точнее, отказ от нуль – соглашения) и привела к «релятивистскому» понятию одновременности, когда два одновременных события в одной системе координат становятся уже неодновременными в другой системе координат.
Конечно, на практике, как при измерении координат, так и при измерении времени, мы всегда используем конечные