потеряло смысл.
А когда Аксиома перестает действовать? А тогда, когда начинают выводить преобразования Лоренца [2, с. 366]. Здесь один геометрический объект – сфера, в центре которой находится источник света (система координат OXYZ), при появлении (всего лишь) наблюдателя превращается в другую – сферу, в центре которой теперь уже находится наблюдатель (система OIXIYIZI). Пока наблюдателя не было, уравнение сферы было таково:
Радиус этой сферы равен ct, а центр сферы находится в точке O, то есть там же, где находится и источник света. И это соответствует физической ситуации. Но вот появляется наблюдатель (со своей системой координат OIXIYIZI) и согласно преобразованиям Лоренца уравнение сферы становятся таковым:
Но сфера (2. 4) это уже совсем другая сфера, нежели сфера (2. 3). Во-первых, радиус сферы (2. 3) не равен радиусу сферы (2. 4), потому, что в преобразованиях Лоренца t не равно tI. Во-вторых, в центре сферы (2. 4) находится теперь уже не источник света, а наблюдатель (точка OI), источник света как оставался в точке O (центр сферы (2. 3)), так и остается в ней. Сфера (2. 3) реально существующая, таинственным образом преобразовалась в другую, не равную самой себе сферу (2. 4), только потому, что изволил появиться наблюдатель. Все это означает, что преобразования Лоренца отменяют Аксиому (она уже не действует).
Последовательный физик должен сказать: «Мы вывели преобразования Лоренца, но теперь измерения потеряли смысл». Но последних четырех слов сторонники теории относительности почему-то никогда не говорят. Возможно, они думают, что при измерениях они не копируют действия математика, а действуют как-то гораздо умнее. Но как? Они это не объясняют. И весьма сомнительно, что они это когда-нибудь объяснят.
Теперь нам становится понятным, почему ситуация с линейками, о которых велись рассуждения выше, становится неразрешимой. Верность или неверность способов измерения потеряла смысл, потому что ещё до этого (т. е. при выводе преобразований Лоренца) потеряло смысл понятие измерения.
А как обстоят дела с измерениями в классической механике? Здесь используются преобразования Галилея, а они, как легко видеть, не отменяют Аксиомы. В самом деле, преобразования Галилея преобразуют сферу (2. 3) в такую:
Сфера (2. 5) совпадает со сферой (2. 3). Радиус сферы (2. 5) равен радиусу сферы (2. 3) потому, что в преобразованиях Галилея t = tI. Наличие слагаемого Vt в скобках первого члена говорит о том, что центр сферы (а вместе с ним и источник света) двигаются по отношению к наблюдателю со скоростью (– V) или (что, то же самое), наблюдатель двигается по отношению к центру сферы со скоростью V. И все это, ни коим образом, не противоречит реальной физической ситуации. Преобразования Галилея не отменяют Аксиомы; напротив, они ей строго подчиняются. Поэтому в классической механике измерения возможны и имеют ясный физический смысл.
2. 5. Релятивистская сфера
Но есть еще опыт (наипростейший, очищенный от всего лишнего, что могло бы помешать правильно рассуждать). И мы не можем не упомянуть