О. М. Железнякова

Феномен дополнительности в научно-педагогическом знании


Скачать книгу

возможность триединства именно в такой (триединой) структуре. При этом она строится не на формальных основаниях, а на смысловых. Одним из таких наиболее распространенных смысловых основаниях триадных структур служит семантическая формула «рацио-интуицио-эмоцио» (61, с. 13).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAZABkAAD/2wBDAAICAgICAQICAgIDAgIDAwYEAwMDAwcFBQQGCAcJCAgHCAgJCg0LCQoMCggICw8LDA0ODg8OCQsQERAOEQ0ODg7/2wBDAQIDAwMDAwcEBAcOCQgJDg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg7/wAARCAMmAjoDAREAAhEBAxEB/8QAHgAAAgICAwEBAAAAAAAAAAAAAQIAAwcIBAYJBQr/xABbEAACAQIEAwYDBQcCBAIFARkBAhEAAwQSITEFBkEHEyJRYXEIMoGRobHB8AkUI0LR4fEVUhYkM2JyggoXGCU0GSZDRFOSGjU2N2NzdHWDorMqODlkhJOjwtL/xAAcAQEBAAMBAQEBAAAAAAAAAAAAAQIEBQMGBwj/xABAEQEAAQMEAAQEBAQEBAYDAAMAAQIDEQQhMUESMmFxBRNRgSKRscEUM6HRIzTh8DVCUoIGJERicvEVJUNFU8L/2gAMAwEAAhEDEQA/APRZLly5DC409CxIj1r4rMy4ZVuXgQjOYLEtBNImU3FnvqXh2LEgElunlVzMKYPdRSRcOU6g5oABHvTcKSwVclxgDMSdqmQBccXNS2WJyh9z+NXc7MrMFFyc2mpFzbymm4rZpcp3jyDtnP1HvU7ReQRddCxUgTuQavYrNwm2qu7GP+/b0p0otdcZAHObzLHQzTca98WVRx7H/wD044p9TbB0zHzrgV+eXOq5lwWRe6JgACQrC3qD9furzwxAIGDZrcwI1WI6jbXzpjIQqCEYhQxOYALr+FMCxigA8AQFozBdIO/qauwnhJ8IW48aDKI9KgIt2u6ZnRM2xDDXX9ffTEYAy2zcYDJlABBRBuf8VcRkMUV0zG2ocgzKAA+VMLyip/EzFASpgAaAHT02pEIGRFa4zWURjrIA09Pz+2phAFoMlougtKqnYCWphUNq3AUWBcGh0A1/U0xCLGtJPed2CMuRgi6jXyqzHbJUUt9/4whIkSVgqPX3qbZ3Tg7AOdVURLeFQCdY1FXk5Eoi2ypVHPmAIb0pIXu0UWiEViBAlRpr5/WpiER0thUJW2SnzZYn6/0qzhTMqZzcNsLGoBEe3tNMdmxAtuPDZtlxvKgCPQee9TEBmUEFVUKWEABNvzoJkT94bKgK9TAhjP8AjWrjcVG2Bak2gFZoIyiDUmNhaCWXMUUQdYUQ39avKFZQGcsgzCNAB5bH76gUJmdWNtTLAKoWR7kUwLMloYVwbad5rEKJP6irthdsK2W3+7Jnto7sfCGEH+lTGx0ORDh2EIFGjFRB30H96YjB0Yoqq5ZBlKgyQP1PpVxAgFs3EYhAwGoPr199qmwT93ti2qQp8UGE0FMQLO6tspdreYGQhIE+h02q4gWKGIOdUUk6uVBLamJiryvStkt9xlcKHJkCJ/UVNsJsORGQM6IgPhcqBLeR9aYyolc9n+IgOmVdNfeh0rNu13UkKsHxBgZmpiMMReFhHtgmJl0Gn9RVlUCKyubqLB+YwBr0Gg9anuCVshPGA8ruiDb7KuxsD2kNjO1tf/qRI+ypMHWSGzbDQQmUa6KJ+mlMRAtCIXGVFKEZtF29aoV1tm2AwAA1MgT/AHqTEIBFt/5BaDeSwdBrFXYRwrWmZFUZejJGnSphWV+QmZOAY9SuULiBGXSPDp711dLtRLctcS761wm9/ELMm4l4jTat57lDXQks7QTGYtpTfs3KHuMRLNABkgzNY5lNzm4+o7whl1kMdRFXK5Lmu5TkeAF1OcyB61d0F7jMPC5RgJnNpr+NSZUe9ukElvEI0DGfaRVzIge73kkuYmVL9am4j3GWyEMmD4vHpHlV3wdHlnRyCwAAOYsR00n+gqhFe53bNndhtMkmoON318GAZHmSaxzKbrSCLyKxOUHQEU7UChuXhliDqRvVAM94TvbPiLdPap2LAcyjLogMajQaVciK1sZoAA8omBV2FTIylioWIOgMwfTyFY7oeWEJooI1Ezm8vrvVVJ8OupBnaPOB/egi5pmWW4TqTp/f0pAUAqQQxU5gHVt9fSohwbZVEts0DxEjartO0Ls194plPMmPVnOYYlxmU6RmP2+X0rgV+efdzqsZlwZfOyqdiM2kzH415sDgsqtcceH5QSfEB5VkyM+Tuj4hl0M+nQffVnBsrdWa9LAFUWCIjKJ6HzqIuRZsvlAR11J20jb0qnStbaFCkKDBlmG/Uk+VSMBkEotsqpIWdRsPOkBVVCVUAs4IgK3SmwVSzZlDM8nVZiYGxHvO1Nw0EWQIBVdwvXyoiQ2bNnbTptIopFcEgAMSB4Q/X7N6ZDhyyEsmU+YaTtBmgRpzMHGZSQJC6GDtSQwzG8CqqLhMExrtvr6ffQFJa7cUoAVTwtGuvnSCDeLulsknadNjO/6NX0WeCeHKBlkTGq7/AHVOkMECmWGsyD/uj8qYCFlSNc2bwkdCOsn2oAzAOrOS0MIKmY+3Y+tQOzEnMSy6wMgkD8/KqAwOWRqubWN26wKIOc908MdBJE0yFJ2UXPEASoPT3oLFR0vKTD65spOx661eF7KVCl4MoWMzO3WoFKklPlVWXxkCOm2tTAc6BVckgkzHtp+VWT0VFQMTsV3ykDUfb5edTtF1vMFCFVzFdWHynWrDLBHII00zNlI2Pp6CiDcJttKnxZtNdwenlTgBTmUZYDEaAHQf16UhDEfxu7DlFESzfyxroPejLsikNka6xaTos7Hr+FSE91l0hu7UyAdTqOvp9lZTgmYkLZ2Z2PiMNI0WB1P5etIIjIwGaT40X5iBqY6fbUBQDMviAEeKdgZ3B86QQTxNCxmHUjcEnaiFTqoXKXPinSPSoHyEtkPhIgyDrtVxuuCFiLRCoSF67/oelTdClf8AqqYckQIOxjyP5UD5fAE/lI0AO3p/ags2tBcviIgmNfX8tKy9GXEMn8ggf6DxEl5IxAUz08PWulpfLLas8S714lt/Ydp9vsrdhsGUBXIVyVJEqBsT01qgmBcCEGSNBvFAk/wWKkQQQzE6tr1p0gAN+7kmFE7sNRptFTdRTPAPhgHr/NVgOvzkRlPmd4qhSrMMuhDjTT8DRBLKoQSWM+In8JqKYFMwMknaFOg001qhGiFEka/y7+9BST4jFy6o8sw0rFMHljcJBCGdROnt9aoebheO71I84mm67q8x+TY5x8x29KxDgkSRKnUDKdj/AFrIBQczeMgkmQdSdqiI2bI7FWaRr12G5qzwpWytb8GhUQxGk+VYhwSrENAAAyhvXTasxFhTlkNmUgaSJ8/TWoEy5A3yksYIn7oqYDOSLo2VmM5jpmA8hVkYBxqqOY8eTA/5lwAR/wBxrg1R+OXOnzS+eyklSqgKWgZTA/HXesGByBcdCyzZPhBUjw+utOV5QlMxcKbYHzMNJ6UkkZIRnZw67gEa+9AFLQfDmDrGqwP0KECxLoA5Fxl+SQDrG9OzcoDBmLHNqBEnXyoglsqsIVCBKshgkeVFKW/g58/eQSCW2j36UOlgRWtyFZiyeAIBv5fdQIrRezBQC0CflM/12pALnO0FtY2UHUevrpTkPbyqWs+INm1kgwd/zq8bHoQsMxZiHWACI0Bj7zFTJuZcwxGV9CU0BOsdParHKwQNrkQlhMQP5tfKonCCDiSWueJtM07DfenaCDCCWKEbkkGRRciM7x4izeS+XUelN5CkOVRh4ANWn3mKdIV8vdhWUIQSTrt9akgkG1cAKwJOgOvlpTgOcwssHjvDECZkVelLlC5m0zjUZuvvU4RBraJLFAY1GgB86vQjlVUggBDofFJXTy+v6irtACKoxGgzKLmbKdiPasYXiVpIBKoMpaDAA2/KsiVICm7KEMd1Yk69axhDqzlwuTIJC+I+I1cruU5TcGVVdVPg8J1P5ChPKMWctPiiT4dY8zJpvKGBIkBwREglswHTWgQBcmQHQneI1npUD6lf4uYK4Ag6++vnVVABCFRnDGIK6D79vagLLcd2BiOuYAyBrNDfKLAKtJtgtMTpp6dKp2DXAFDZsyt4oAg6e9TIfK38S5OpHgzgbjU/ZVXoqsHjNoSIkGAT+utTkgp8N92Zs2Vdx/N9BtTtBVithgSMjHVs0+303pHBlP4j4d2Dm5mgancjr9aLzCwrnhhDg/zeUb++vWqYJduGSVgshiM29JSeQUBcQS+gMFQvSp2Mqcg5TwDHZtlxI3G0qPwNdTTeWW3a4l3pUGUZjmgGdevqK3mwCknP3gkkRA11/XnQDV3JgxGx6LU7BBMEZgwDSMx2qhvHkJDZxEEzqNam4rVmzElAQWIOYyJ+n40yFmFYZSsaE7T+vWgtJy9266Bh1On96cbojMY6wNzvH1opctk3VUkyBIgaE02ACgAOJLKCDpEx5TQWwsaraB6gjam64kjyq5ShFwGdNYG0esU4QJW5kzMFXaTt7irkKYIO7PvtIioG0bu8o8QMDSCR50EBYWCQozQIzdddP8UC5VGkm45YjwmBt08qkwiAsCMmh/2t9daqnJYtmJVjpAJ1PkfvpIbJLtc/nB0CneP6Ux2K8hW4oOumrE6GpwCACXUuIzgaGD+tKqNfeJDLzBxAvsuIfQnrmO3nXz9fnlzquZcWB3JXJBO7L1BE/WoxKoUXzNwiF1JQa9N9KKCH+IumeWEoymoDmYOoJCanb3pmUOJu5vEC5BjMdfQ6eVXleSq4zGCcqiNtWoApy3ZfRSIgnX0FERfDcK3WAOyx5Hof6VI25UQLhOcgQfnAjaevSqiFoaFUqJhemadtftoqwqqhQAweCGJ0IA+6qTBHFzOpDw4PzTP2/wBakoGoLraGdCdp+bzPvT2UwCwrBc5BJA3A+tUV94ovgtomeNfFr+vxrHO4ta5bZAB4p1B6ATMfZVzBsrYllZ9Mm8ERH1/W9J+qHUs1kKqgKdR/KJplUgGM7AMV0UaT01/pQSB3iKcuUHK28A760UANDbeRdmIB6b/r3oxMyfKqgZmedN/7a1ZhlKsPlyo4Vg2raQdJ1mog5FEEsFJPQz6zFMCM5YOyAsEG51X39dKBnbOo8PeRAAUaEe9JnIjE+OcrOY0G8bxVEZi6yxJ03G331JkkhQd0VUEjNqW3Gv360wHLwrLKtpqp66x9NqHoBKi7EkZTrpsd8tAuVJ1kWzqJ333qYgQCHzMBC/KTqDPWKAqPGiLD6zAPh26edXsKzE5vDlJHhEyIqSHm53TF3ykEBp6Hy9tqu4RnLuraB8uumkedBaDBNpTIdv4YzaeWh3pnoVXCyMCxRiumokjzEeVSREA7qfEjERbI1066GrAYgFLbK2inxELpr0j6UBgASVLIBv0Y7a+mtAZJEgnfRbY+XyFAoBt4YDZt2uR809KcQdLLZIeRcbyIJ0H69KsEFumMwzSWjKBM/wB6SslzlbUCQY3Gh86Z2Ysp8hEDgOPJQf8AXBkmSwyiD+VdPS+SW5a4l3nZ0C+IbAxO2tbrYOxUQIkHdp61QZHdAMFPUCJ+/rQJDKneiFzE9Ou9TfkOhDInmskiNAPOgDEJbgmANvrQKmZM2cjMAGKg9P19aC3xZSRBBWcyrofSqFDA5lIOWfFH3VPcFUS1mJEAiPBpNXEQKwrKhUpIVvEFPWpxArcnvWjadIesZmchzC3WXOIJ2A+2qCCGJAJEaQrRG0GqAfA7EupBmQD1/wA0EyHL3eYAbhvWpH0AIAtyEKSJyzAB8qbIZGAuZyCNNFIEDzqqsOa5bJIGifNP31luKgCrZgFgiQY0HpWHYAKtbQsCWny08/pTZFhMsDlnMOh1XXQfSqpWglgdZ2XznzpIwDxQkcwY+R/8+cogbUDMa4NfmlzqvNLgjwX0BZsrQSTuTWHDHbIO48P8mn87aCkyATFhsrgXGMExpNJ4NwdQUZogNpA6+o9KkgHKGEAXGTYg/ZpTtD5LaMQxYHPMqnlVxCmKPcQKfCCJAnenJicKvnJUgB1BBbLEj3qbBx3gZWRAdpH6306+lXcxJmZ1ABYkSCDI0n9Gk5C22a4yhspMyHVenrSN15Bgvel1eSIIQttJiPpUlEDEXQLZ8AO7Dbz0p3sZXKGaJJydQehHp+VZYyRCsBVtDU96pBDL5T+tanAWFZ0AyhSZM7D0/W9AzgLu4K5oWTMe49qvYZVVM0row1YgyKcBGZe8JZWIZpCiNT/apIYHNoozCBrO3SfegQZlAkSJJIIiYOx9Kge6qumYqTJkQflPX6VZJITmtXGyy4UII0On4zU5BQqDlKwubQAga1YAYo7AaIC4ytP3VEWP3hIkkoD76Rv6Vd13Vrla2RIJGmhgT1nrTCAM8KwbYRA1BE7esGpuq6WJIY5V2UzJ06/rasjP1VEkEwxYhZCRt1qboYJFolnyKxlm3PmTTCgrAuTkNtYBHi6HyqQC5TNpbUbw2XUT0qzybASVtsoIVAYgbxHnTpBuQ9lAqDKy+IhTIJpO7KSsqi/lfwllEA7x+utGJkVWBzX4AABynf8ApVXAEMYUNmEzB/UisZBkBTbYF2Uy6qIIEVfQHNCFkuF3IBUHWP1rRUzAKuZYtQ05zA33MbCqmUZwiFreqa7mB6QaBMjLlAtgGJOp1Man061jwG7xSpOTyhT106dd6uRLYbMXAGUiJnUelSCEgk/JmOUwo09/eKoZEDC3BD6EMDoPr61Ygwyd2e57fAseXICjEBQcskHKPPeulpcxTOW3Z4l3xYEhflmdehNb3s2BymYmFjeYmgjABAhBzKp8O2XrT0By5rZIYCNgSdiKdBXMWkOYFWWGza7dKIZSHQAkAgQDm0n1pHCkVRBIOjahZ/vQWsYlCwhVJOlULAynMQkwSd5oFDBbjSBHnGlQXAEWRlHdDNoCYj6Vl0CM2Qfw82m+TescegqMi8YmSYzRr9P1rQVkAgJ88SCR5+VRDMFFpCVKgnXSrxCmBBQuZLgeEkaxNAGaQHuicpiD0HtT3EzeBgxKNoYOpAoAoJZbjNKDU5hE61fUWBx3nhIAGkHUL5aUz9BVmGYgGUOxiZFQFiQbgURoBJEdftp7AIG0AJhjqDqDMUwNfuIwnMOPUnTv7hE9fEf0NK4FW1UubV5pcNWGdmdQARoYE/WsEgEytlEypMEdPUa1UMBlUqzgDLPdkxljb360wyOpGty8CQoIzEzrGlX3SABt94IBMMDMTpU2QD/FQFcuUmNCYinKi1uDbdtZOpBnTrVwBlU22UqYU6wI8+nTSoQIeCwty50lpInTb1oZVsqkI4BzLGUDp/WkoYC6tvKyMGcSAABA8pq7ruNtM1x+8CgzsxBETpUj1MCrJnAK3CAI1+2kSmxUszaUhssqJYfeIqRCmXxXCHEiPETsfT7qckCwZcMcxzAjUzqPKKy3