электронов зависит от hν, то есть от частоты света. Таким образом, Эйнштейн развил квантовую идею Планка, превратив ее из простого, хотя и удобного, вычислительного приема в выражение возможного физического закона[327].
Такое развитие знания позволило Бору взяться за проблему механической неустойчивости модели атома Резерфорда. В июле, в период подготовки «небольшой статьи, которую можно будет показать Резерфорду», у него уже появилась основная идея. Она заключалась в следующем: поскольку классическая механика предсказывает, что атом, по Резерфорду, с маленьким, массивным центральным ядром, окруженным электронами, должен быть неустойчивым, а на самом деле атомы представляют собой одни из самых устойчивых систем в мире, значит, классическая механика не способна описывать такие системы и должна уступить место квантовому подходу. Планк предложил квантовые принципы, чтобы спасти законы термодинамики; Эйнштейн распространил квантовые идеи на свет; Бор предлагал теперь ввести квантовые принципы в самый атом.
В течение всей осени и начала зимы, вернувшись в Данию, Бор разбирался со следствиями из этой идеи. Трудность с атомом Резерфорда заключалась в том, что ничто в его строении не обеспечивало его устойчивости. Если речь шла об атоме с несколькими электронами, он должен был разваливаться на части. Даже в случае атома водорода всего с одним (механически устойчивым) электроном классическая теория предсказывала, что такой электрон должен испускать свет при изменении направления орбитального движения вокруг ядра и, теряя таким образом энергию, смещаться по спиральной траектории к ядру и в конце концов упасть на него. С точки зрения ньютоновской механики атом Резерфорда – миниатюрная солнечная система – должен был быть либо невозможно большим, либо невозможно маленьким.
Поэтому Бор предположил, что в атоме должно существовать то, что он назвал «стационарными состояниями»: орбиты, на которых электроны могут находиться без нарушений устойчивости, без испускания света и без падения на ядро по спиральной траектории. Он произвел расчеты по этой модели и обнаружил, что их результаты отлично согласуются с самыми разными экспериментальными значениями. Теперь у него была по меньшей мере правдоподобная модель, которая, в частности, объясняла некоторые химические явления. Но она явно была произвольной; не было никаких доказательств того, что она более точно отражает реальное строение атома, чем другие полезные модели – например «пудинг с изюмом» Дж. Дж. Томсона.
Помощь пришла с неожиданной стороны. Дж. У. Николсон, профессор математики в Королевском колледже Лондона, которого Бор считал глупцом, опубликовал несколько статей, в которых для объяснения необычного спектра солнечной короны предлагалась квантованная сатурнианская модель атома. Статьи эти были опубликованы в астрономическом журнале в июне; Бор увидел их только в декабре. Он быстро нашел недостатки модели Николсона, но в то же время почувствовал, что другие исследователи