Ross Anderson

Security Engineering


Скачать книгу

such as if you had a cipher with a 32-bit block and a 128-bit key with a differential attack whose success probability given a single pair was 2 Superscript negative 40. Given a lot of text under a number of keys, we'd eventually solve for the current key.)

      There are many variations on these two themes. For example, instead of looking for high probability differences, we can look for differences that can't happen (or that happen only rarely). This has the charming name of impossible cryptanalysis, but it is quite definitely possible against many systems [243]4.

      Block cipher design involves a number of trade-offs. For example, we can reduce the per-round information leakage, and thus the required number of rounds, by designing the rounds carefully. But a complex design might be slow in software, or need a lot of gates in hardware, so using simple rounds but more of them might have been better. Simple rounds may also be easier to analyse. A prudent designer will also use more rounds than are strictly necessary to block the attacks known today, in order to give some safety margin, as attacks only ever get better. But while we may be able to show that a cipher resists all the attacks we know of, and with some safety margin, this says little about whether it will resist novel types of attack. (A general security proof for a block cipher would appear to imply a result such as upper P not-equals upper N upper P that would revolutionise computer science.)

      5.4.2 The Advanced Encryption Standard (AES)

      The Advanced Encryption Standard (AES) is an algorithm originally known as Rijndael after its inventors Vincent Rijmen and Joan Daemen [507]. It acts on 128-bit blocks and can use a key of 128, 192 or 256 bits in length. It is an SP-network; in order to specify it, we need to fix the S-boxes, the linear transformation between the rounds, and the way in which the key is added into the computation.

      AES uses a single S-box that acts on a byte input to give a byte output. For implementation purposes it can be regarded simply as a lookup table of 256 bytes; it is actually defined by the equation upper S left-parenthesis x right-parenthesis equals upper M left-parenthesis 1 slash x right-parenthesis plus b over the field upper G upper F left-parenthesis 2 Superscript 8 Baseline right-parenthesis where upper M is a suitably chosen matrix and b is a constant. This construction gives tight differential and linear bounds.

      The key material is added byte by byte after the linear transformation. This means that 16 bytes of key material are needed per round; they are derived from the user supplied key material by means of a recurrence relation.

      Should we trust AES? The governments of Russia, China and Japan try to get firms to use local ciphers instead, and the Japanese offering, Camellia, is found in a number of crypto libraries alongside AES and another AES competition finalist, Bruce Schneier's Twofish. (Camellia was designed by a team whose own AES candidate was knocked out at the first round.) Conspiracy theorists note that the US government picked the weakest of the five algorithms that were finalists in the AES competition. Well, I was one of the designers of the AES finalist Serpent [95], which came second in the competition: the winner Rijndael got 86 votes, Serpent 59 votes, Twofish 31 votes, RC6 23 votes and MARS 13 votes. Serpent has a simple structure that makes it easy to analyse – the structure of Figure 5.10, but modified to be wide enough and to have enough rounds – and was designed to have a much larger security margin than Rijndael in anticipation of the attacks that have now appeared. Yet the simple fact is that while Serpent is more secure, Rijndael is faster; industry and crypto researchers voted for it at the last AES conference, and NIST approved it as the standard.

      Having been involved in the whole process, and having worked on the analysis and design of shared-key ciphers for much of the 1990s, I have a high level of confidence that AES is secure against practical attacks based on mathematical cryptanalysis. And even though AES is less secure than Serpent, practical security is all about implementation, and we now have enormous experience at implementing AES. Practical attacks include timing analysis and power analysis. In the former, the main risk is that an opponent observes cache misses and uses them to work out the key. In the latter, an opponent uses measurements of the current drawn by the device doing the crypto – think of a bank smartcard that a customer places in a terminal in a Mafia-owned shop. I discuss both in detail in Part 2, in the chapter on Emission Security; countermeasures include special operations in many CPUs to do AES, which are available precisely because the algorithm is now a standard. It does not make sense to implement Serpent as well, ‘just in case AES is broken’: having swappable algorithms is known as pluggable cryptography, yet the risk of a fatal error in the algorithm negotiation protocol is orders of magnitude greater than the risk that anyone will come up with a production attack on AES. (We'll see a number of examples later where using multiple algorithms caused something to break horribly.)

      The back story is that, back in the 1970s, the NSA manipulated the choice and parameters of the previous standard block cipher, the Data Encryption Standard (DES) in such a way as to deliver a cipher that was good enough for US industry at the time, while causing foreign governments to believe it was insecure, so they used their own weak designs instead. I'll discuss this in more detail below, once I've described the design