D., the IPBSL Team, Río Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4, 511–534, 2014.
2.12. Amils, R., Lessons learned from thirty years of geomicrobiological studies of Río Tinto. Res. Microbiol., 167, 7, 539–545, 2016.
2.13. Amils, R. and Fernández-Remolar, D., Acidophiles and Astrobiology, in: Acidophiles, Life in Extremely Acidic Conditions, B. Johnson and R. Quatrini (Eds.), pp. 285–300, Caister Academic Press, UK, 2016.
2.14. Archibald, F., Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett., 19, 29–32, 1983.
2.15. Bachofen, R., Ferloni, P., Flynn, L., Review: Microorganisms in the subsurface. Microbiol. Res., 153, 1–22, 1998.
2.16. Benz, M., Brune, A., Schink, B., Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch. Microbiol., 169, 159–165, 1998.
2.17. Boulter, C.A., Did both extensional tectonics and magmas act as major drivers of convection cells during the formation of the Iberian Pyrite Belt massive sulphide deposits? J. Geol. Soc. London, 153, 181–184, 1996.
2.18. Boyd, W.P., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C., Bowie, A.R., Buesseler, K.O., Chang, H. et al., A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695–702, 2005.
2.19. Braun, V. and Killmann, H., Bacterial solution to the iron.supply problems. Trends Biochem. Sci., 24, 104–109, 1999.
2.20. Carlson, H.K., Clark, I.C., Blazewicz, S.J., Iavarone, A.T., Coates, J.D., Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J. Bacteriol., 195, 3260–3268, 2013.
2.21. Chapelle, F.H., O´Nelly, K., Bradley, P.M., Methé, B.A., Ciufo, S.A., Knobel, L.L., Lovley, D.R., A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415, 312–314, 2002.
2.22. Colín-García, M., Kanawati, B., Harir, M., Schmidt-Kopplin, P., Amils, R., Parro, V., García, M., Fernández-Remolar, D., Detection of peptidic sequences in the ancient acidic sediments of Río Tinto, Spain. Orig. Life Evol. Biosph., 41, 523–527, 2011.
2.23. Colmer, A.R., Temple, K.L., Hinkle, H.E., An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol., 59, 317–328, 1950.
2.24. Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C. et al., Detection of cristaline hematite mineralization on Mars by the thermal emission spectrometer: Evidence for near-surface water. J. Geophys. Res., 104, 9623–9642, 2000.
2.25. Christensen, P.R., Morris, R.V., Lane, M.D., Banfield, J.L., Malin, M.C., Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res., 106, 23873–23885, 2001.
2.26. Darwin, C., Voyages of the Adventure and Beagle, in: Volume III, Journal and remarks, pp. 1832–1836, Henry Colburn, London, UK, 1839.
2.27. Davis, Welty, A.T., Borrego, J., Morales, J.A., Pendon, J.G., Ryan, J.G., Río Tinto estuary (Spain): 5000 years of pollution. Environ. Geol., 39, 1107–1116, 2000.
2.28. Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J., Calvin, W.M., Clark, R.N., Marais, D.J.D., Milliken, R.E. et al., Orbital Identification of Carbonate-Bearing Rocks on Mars. Science, 322, 1828–1832, 2008.
2.29. Ehlmann, B.L. and Mustard, J.F., An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophys. Res. Lett., 39, L11292, 2012.
2.30. Ehrlich, H.L., Newman, D.K., Kappler, A., Ehrlich’s Geomicrobiology, 6th edition, CRC, Boca Ratón, USA, 2015.
2.31. Escudero, C., Vera, M., Oggerin, M., Amils, R., Active microbial biofilms in deep continental subsurface poor porous rock samples from the Iberian Pyrite Belt. Sci. Rep., 8, e1538, 2018.
2.32. Essalhi, M., Sizaret, S., Barbanson, L., Chen, Y., Lagroix, F., Demory, F., Nieto, J., Sáez, R., Capitán, M.A., A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Miner. Deposita, 46, 981–999, 2011.
2.33. Farrand, W.H., Glotch, T.D., Rice, J.W., Jr., Hurowitz, J.A., Swayze, G.A., Discovery of jarosite within Mawrth Vallis region of Mars: Implications for the geologicalhistory of the region. Icarus, 204, 478–488, 2009.
2.34. Fairen, A.G., Fernández-Remolar, D., Dohm, J.M., Baker, V.R., Amils, R., Inhibition of carbonate synthesis in acidic oceans from Mars. Nature, 431, 423–426, 2004.
2.35. Fernández-Remolar, D.C., Rodríguez, N., Gómez, F., Amils, R., Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J. Geophys. Res., 108, E7, 5080, 2003.
2.36. Fernández-Remolar, D.C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J.A., Torres, J., González Kesler, C., Amils, R., The Tinto River, an extreme acidic environment as an analogue of the Terra Meridiani hematite site of Mars. Planet. Space Sci., 52, 239–248, 2004.
2.37. Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., Knoll, A.H., The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks of Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 149–167, 2005.
2.38. Fernández-Remolar, D., Gómez, F., Prieto-Ballesteros, O., Schelble, R.T., Rodríguez, N., Amils, R., Some ecological mechanisms to generate habitability in planetary subsurfaces areas by chemolithotrophic communities: The Río Tinto subsurface ecosystem as a model system. Astrobiology, 8, 157–173, 2008.
2.39. Fernández-Remolar, D.C. and Knoll, A.H., Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: Implications for Mars exploration. Icarus, 194, 72–85, 2008.
2.40. Fernández-Remolar, D., Prieto-Ballesteros, O., Rodríguez, N., Gómez, F., Amils, R., Gomez-Elvira, J., Stoker, C., Underground habitats found in the Río Tinto Basin: A model for sub-surface life habitats on Mars. Astrobiology, 8, 1023–1046, 2008.
2.41. Fernández-Remolar, D., Prieto-Ballesteros, O., Gómez-Ortiz, D., Fernández-Sampedro, M., Sarrazin, P., Gailhanou, M., Amils, R., Río Tinto sedimentary mineral assemblages: A terrestrial perspective that suggests some formation pathway of phyllosilicates on Mar. Icarus, 211, 114–138, 2011.
2.42. Fernández-Remolar, D.C., Preston, L.J., Sánchez-Román, M., Izawa, M.R.M., Huang, L., Southam, G., Banerjee, N.R., Osinski, G.R., Flemming, R., Gómez-Ortíz, D. et al., Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth Planet. Sci. Lett., 351, 13–26, 2012.
2.43. Fernández-Remolar, D., Banerjee, N., Gómez-Ortiz, D., Izawwa, M., Amils, R., A mineralogical archive of the biogeochemical sulfur cycle preserved in the subsurface of the Río Tinto system. Am. Mineral., 103, 394–411, 2018.
2.44. Florentino, A.P., Brienza, C., Stams, A.J.M., Sánchez-Andrea, I., Desulfurella amilsii sp.nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int. J. Syst. Evol. Microbiol., 66, 1249–1253, 2016.
2.45. Florentino, A.P., Stams, A.J.M., Sánchez-Andrea, I., Genome sequence of Desulfurella amilsii strain TR1 and comparative genomics of Desulfurellaceae family. Front. Microbiol., 8, e222, 2017.
2.46. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., Detection of methane in the atmosphere of Mars. Science, 306, 1758–1761, 2004.
2.47. García-Moyano, A.,