Группа авторов

EXTREMOPHILES as Astrobiological Models


Скачать книгу

filaments from an extreme acidic environment, Río Tinto, (SW, Spain). Syst. Appl. Microbiol., 30, 601–614, 2007.

      2.48. Garcia-Moyano, A., González-Toril, E., Moreno-Paz, M., Parro, V., Amils, R., Evaluation of Leptospirillum spp. in Rio Tinto, a model of interest to biohydrometallurgy. Hydrometallurgy, 94, 155–161, 2008.

      2.49. García Moyano, A., González-Toril, E., Aguilera, A., Amils, R., Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol. Ecol., 81, 303–314, 2012.

      2.50. Garrido, P., González-Toril, E., García-Moyano, A., Moreno-Paz, M., Amils, R., Parro, V., An oligonucleotide prokaryotic microarray (PAM): Its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ. Microbiol., 10, 836–850, 2008.

      2.51. Geen, A., Adkins, J.F., Boyle, E.A., Nelson, C.H., Palanques, A., A 120-year record of wide-spread contamination from mining of the Iberian Pyrite Belt. Geology, 25, 291–294, 1997.

      2.52. Gold, T., The deep hot biosphere. Proc. Natl. Acad. Sci. USA, 89, 6045–6049, 1992.

      2.53. Gómez, F., Fernández-Remolar, D., González-Toril, E., Amils, R., The Tinto River, an extreme Gaian environment, in: Gaia 2000, L. Margulis, J. Miller, P. Boston, S. Schneider, C. Crist (Eds.), pp. 321–333, MIT Press, Boston, USA, 2003.

      2.54. Gómez, F., Aguilera, A., Amils, R., Soluble ferric iron as an efective protective agent against UV radiation: Implications for early life. Icarus, 191, 352–359, 2007.

      2.55. Gómez, F., Mateo-Martí, E., Prieto.Ballesteros, O., Martín-Gago, J., Amils, R., Protection of chemolithotrophic bacteria exposed to Mars environmental conditions. Icarus, 209, 2, 482–487, 2010.

      2.56. Gómez-Ortiz, D., Fernández-Remolar, D., Granda, A., Quesada, C., Granda, T., Prieto-Ballesteros, O., Molina, A., Amils, R., Identification of the subsurface sulfide bodies responsible for acidity in Río Tinto source water. Spain. Earth Planet. Sci. Lett., 391, 36–41, 2014.

      2.57. González-Toril, E., Llobet-Brosa, E., Casamayor, E.O., Amann, R., Amils, R., Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol., 69, 4853–4865, 2003.

      2.58. González-Toril, E., Aguilera, A., Rodríguez, N., Fernández-Remolar, D., Gómez, F., Díaz, E., García-Moyano, A., Sanz, J.L., Amils, R., Microbial ecology of Río Tinto, a natural extreme acidic environment. Hydrometallurgy, 10, 329–333, 2010.

      2.59. Gross, W., Ecophysiology of algae living in highly acidic environments. Hydrobiology, 433, 31–37, 2000.

      2.60. Hallberg, K.B. and Johnson, D.B., Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol., 49, 37–84, 2001.

      2.61. Johnson, D.B. and Hallberg, K.B., The microbiology of acidic mine waters. Res. Microbiol., 154, 466–473, 2003.

      2.62. Johnson, D.B. and Hallberg, K.B., Acid mine drainage remediation options: A review. Sci. Total Environ., 338, 3–14, 2005.

      2.63. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B. et al., Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover. Science, 306, 1740–1745, 2005.

      2.65. Klueglein, N., Zeitvogel, F., Stierhof, Y.D., Floetenmeyer, M., Konhauser, K.O., Kappler, A., Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl. Environ. Microbiol., 80, 1051–1061, 2014.

      2.66. Kotsyurbenko, O.R., Friedrich, M.W., Simankova, M.V., Nozhenvnikova, A.N., Golyshin, P.N., Timmis, K.N., Conrad, R., Shift from acetoclastic to H2 dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl. Environ. Microbiol., 73, 2344–2348, 2007.

      2.67. Leandro, T., da Costa, M.S., Sanz, J.L., Amils, R., Complete genome of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 m deep on the subsurface of the Iberian Pyrite Belt. Genome Announc. J., 5, 17, #e00238–17, 2017.

      2.68. Leblanc, M., Morales, J.A., Borrego, J., Elbaz-Poulichet, F., A 4500-year-old mining pollution in Southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol., 95, 655–662, 2000.

      2.69. Leistel, J.M., Marcoux, E., Theiblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Pascual, E., Saez, R., The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Deposita, 33, 2–30, 1998.

      2.70. Lescuyer, J.L., Leistel, J.M., Mrcoux, E., Milési, J.P., Thiéblemont, D., Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides. Miner. Deposita, 33, 208–220, 1998.

      2.71. Lichtenberg, K.A., Arvidson, R.E., Morris, R.V., Murchie, S.L., Bishop, J.L., Fernandez Remolar, D., Glotch, T.D., Noe Dobrea, E., Mustard, J.F., Andrews-Hanna, J. et al., Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res.: Planets, 115, ED00D17, 2010.

      2.72. López-Archilla, A.I., Marín, I., Amils, R., Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microb. Ecol., 41, 20–35, 2001.

      2.73. López-Archilla, A.I., González, A.E., Terrón, M.C., Amils, R., Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: The Tinto River. Can. J. Microbiol., 50, 923–934, 2005.

      2.74. Lu, S., Gischkat, S., Reiche, M., Akob, D.M., Hallberg, K.B., Küsel, K., Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl. Environ. Microbiol., 76, 8174–8183, 2010.

      2.75. Malki, M., González-Toril, E., Sanz, J.L., Gómez, F., Rodríguez, N., Amils, R., Importance of the iron cycle in biohydrometallurgy. Hydrometallurgy, 83, 223–228, 2006.

      2.76. Margulis, L., Mazur, P., Barghoorn, E.S., Halvorson, H.O., Jukes, T.H.J., Kaplan, I.R., The Viking Mission: Implications for life in the Vallis Marineris area. Science, 305, 78–81, 1979.

      2.77. Martin, J.H., Glacial-interglacial CO2 change: The iron hypothesis. Paleooceanography, 5, 1–13, 1990.

      2.78. Michalski, J.R., Dobrea, E.Z.N., Niles, P.B., Cuadros, J., Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun., 8, e15978, 2017.

      2.79. Milliken, R.E., Swayze, G.A., Arvidson, R.E., Bishop, J.L., Clark, R.N., Ehlmann, B.L., Green, R.O., Grotzinger, J.P., Morris, R.V., Murchie, S.L. et al., Opaline silica in young deposits on Mars. Geology, 36, 847–850, 2008.

      2.80. McLennan, S.M., Bell, J.F., III, Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R. et al., Provenance and diagenesis of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett., 240, 95–121, 2005.

      2.82. Oggerin, M., Tornos, F., Rodríguez, N., del Moral, C., Sánchez-Román, M., Amils, R., Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol., 15, 2228–2237, 2013.

      2.83. Oggerin, M., Rodríguez, N., del Moral, C., Amils, R., Fungal jarosite biomineralization in Río Tinto, a process of biohydrometallurgical interest.