Gary A. Mabbott

Electroanalytical Chemistry


Скачать книгу

of a species. An activity of a species is proportional to its concentration, Ci. ai = γi·Ci, where the proportionality constant, γi, is known as an activity coefficient and is dependent upon the ionic strength of the solution. In contrast, voltammetric methods deliberately apply energy in the form of a voltage from an outside source to a cell in order to drive a chemical reaction at a working electrode. In these experiments, the current is related to the number of moles of reactant that is converted in the process. This current can be used to quantify the concentration of the original reactant.

      In addition to the working electrode (or an indicator electrode in a potentiometric experiment), a second electrode is needed to transfer electrons into or out of the cell in order to counterbalance the charge going into or out of the solution at the working or indicator electrode. This second electrode is a reference electrode. It exploits a simple, reliable electron transfer process that occurs at a well‐established voltage. The reference electrode is designed to maintain its potential (voltage) in the process. Consequently, all of the energy applied to the cell from the outside is focused onto the working electrode. Whenever the current level or the cell's electrical resistance, R, is high, some energy is lost as heat in overcoming the electrical resistance of the solution. This causes an error in voltammetric experiments because some voltage is lost from the voltage that was intended to be applied to the working electrode. This error can be calculated from Ohm's law, Vlost = iRcell.

      An electrical capacitor serves as a good model for many aspects of the electrical double layer. The charge, Q, on either side of the double layer can be calculated from Q = CV, where V is the voltage or potential difference across the double layer and the coefficient, C, is the capacitance. There are subtleties to the structure of the double layer that have significance to electron transfer studies, but most of the charge on the solution side accumulates in a layer called the outer Helmholtz plane (OHP), where ions are separated from the electrode by a layer of one or two water molecules.

      The conductance of a solution is the reciprocal of the solution's electrical resistance. Its magnitude depends on the type and concentration of the ions. The measurement of the conductance of a water sample is a semiquantitative measure of ionic concentration. Conductance is also used as a special detector for ionic solutes in ion chromatography.

      Mass transport is a term for the movement of a chemical species in solution. Two mechanisms for material movement are very important to electroanalytical chemistry. The net movement in a given direction that is due to a concentration gradient and is characterized by a random walk of the molecule or the ion in an unstirred solution is known as diffusion. The flux, Ji, of a species is a measure of the net movement of material across a plane perpendicular to the direction of movement. It has units of mol/cm2/s. Fick's first law of diffusion associates the flux to the concentration gradient for the species. Ji = Di(∂Ci/∂x). This is a key concept in electron‐transfer experiments. The other mechanism for mass transport is convection or stirring of the bulk solution.

      In both voltammetry and potentiometry experiments, a difference in rates of diffusion associated with salt bridges used with reference electrodes leads to a higher flux for either positive or negative ions over those of the opposite charge. The excess of charge “pushes back” against continuing build‐up of charge leading to a steady state situation. The result is a net separation of charge and a junction potential or diffusion potential. Junction potentials are generally small, but they can be serious errors in potentiometric experiments. Later chapters discuss this issue in depth.

      Electrical phenomena are associated with charged particles. Electrons are the most common charge carriers that one encounters, but ions in a solution are also important charge carriers. The purpose of this chapter is to define some electrochemical terms and introduce some fundamental concepts associated with electrical charge and phase boundaries.