Sindo Kou

Welding Metallurgy


Скачать книгу

Kou, S. and Wang, Y.H. (1986). Three‐dimensional convection in laser melted pools. Metallurgical Transactions A 17 (12): 2265–2270.

      26 26 Kou, S. and Wang, Y.H. (1986). Computer simulation of convection in moving arc weld pools. Metallurgical Transactions A 17A: 2271.

      27 27 Heiple, C.R. and Roper, J.R. (1982). Mechanism for minor element effect on GTA fusion zone geometry. Welding Journal 61 (4): 97s–102s.

      28 28 Heiple, C.R. and Roper, J.R. (1982). Trends in Welding Research in the United States (ed. S.A. David), 489–520. Metals Park, OH: American Society for Metals.

      29 29 Heiple, C.R., Roper, J.R., Stagner, R.T., and Aden, R.J. (1983). Surface active element effects on the shape of GTA, laser and electron beam welds. Welding Journal 62 (3): 72s–77s.

      30 30 Heiple, C.R., Burgardt, P., and Roper, J.R. (1983). The effect of trace elements on GTA weld penetration. In: Modeling of Casting and Welding Processes II, 193–205. Warrendale, PA: TMS AIME.

      31 31 Heiple, C.R. and Burgardt, P. (1985). Effects of SO2 shielding gas additions on GTA weld shape. Welding Journal 64 (6): 159s–162s.

      32 32 Kou, S., Limmaneevichitr, C., and Wei, P.S. (2011). Oscillatory Marangoni flow: a fundamental study by conduction‐mode laser spot welding. Welding Journal 90 (12): 229‐s–240‐s.

      33 33 Keene, B.J., Mills, K.C., and Brooks, R.F. (1985). Surface properties of liquid metals and their effects on weldability. Materials Science and Technology 1 (7): 569–571.

      34 34 Limmaneevichitr, C., and Kou, S. (2000). Unpublished research. University of Wisconsin, Madison, WI.

      35 35 Sahoo, P., DebRoy, T., and McNallan, M.J. (1988). Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy. Metallurgical and Materials Transactions B 19 (3): 483–491.

      36 36 McNallan, M.J. and Debroy, T. (1991). Effect of temperature and composition on surface tension in Fe‐Ni‐Cr alloys containing sulfur. Metallurgical and Materials Transactions B 22 (4): 557–560.

      37 37 Pitscheneder, W., DebRoy, T., Mundra, K., and Ebner, R. (1996). Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels. Welding Journal 75 (3): 71s–80s.

      38 38 Sundell, R.E., Correa, S.M., Harris, L.P., Solomon, H.D., Wojcik, L.A., Savage, W.F., Walsh, D.W., and Lo, G.D., General Electric Report No. 86SRD013. 1986, General Electric Company: Schenectady, NY.

      39 39 Zacharia, T., David, S.A., Vitek, J.M., and Debroy, T. (1989). Weld pool development during GTA and laser beam welding of type 304 stainless steel, part II—experimental correlation. Welding Journal 68 (12): 510s–519s.

      40 40 Limmaneevichitr, C. and Kou, S. (2000). Visualization of Marangoni convection in simulated weld pools. Welding Journal 79 (5): 126s–135s.

      41 41 Mazumder, J. and Voekel, D. (1992). Challenges in modeling and measurement of laser materials processing. In: Laser Advanced Materials Processing –Science and Applications (eds. A. Matsunawa and S. Katayama), 373–380. Osaka, Japan: High Temperature Society of Japan.

      42 42 Tsai, M.C. and Kou, S. (1989). Marangoni convection in weld pools with a free surface. International Journal for Numerical Methods in Fluids 9 (12): 1503–1516.

      43 43 Limmaneevichitr, C. and Kou, S. (2000). Visualization of Marangoni convection in simulated weld pools containing a surface‐active agent. Welding Journal 79 (11): 324s–330s.

      44 44 Smechenko, V.K. and Shikobalova, L.P. (1947). Surface tension and crystallization: surface tension of molten salt solutions. Zhurnal Fizicheskoi Khimii 21: 613–622.

      45 45 Mishra, S., Lienert, T.J., Johnson, M.Q., and DebRoy, T. (2008). An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Materialia 56 (9): 2133–2146.

      46 46 Tsai, M.C. and Kou, S. (1990). Electromagnetic‐force‐induced convection in weld pools with a free surface. Welding Journal 69 (6): 241s–246s.

      47 47 Flemings, M.C. (1974). Solidification Processing. New York: McGraw‐Hill.

      48 48 Tsai, M.C. and Kou, S. (1990). Weld pool convection and expansion due to density variations. Numerical Heat Transfer 17 (1): 73–89.

      49 49 Choo, R.T.C. and Szekely, J. (1994). The possible role of turbulence in GTA weld pool behavior. Welding Journal 73 (2): 25s–31s.

      50 50 Weckman, D.C. (1999). Trends in Welding Research, 3–12. Materials Park: ASM International, OH.

      51 51 Hong, K., Weckman, D.C., Strong, A.B., and Zheng, W. (2002). Modelling turbulent thermofluid flow in stationary gas tungsten arc weld pools. Science and Technology of Welding and Joining 7 (3): 125–136.

      52 52 Hong, K., Weckman, D.C., Strong, A.B., and Zheng, W. (2003). Vorticity based turbulence model for thermofluids modelling of welds. Science and Technology of Welding and Joining 8 (5): 313–324.

      53 53 Kou, S. (2012). Fluid flow and solidification in welding: three decades of fundamental research at the University of Wisconsin. Welding Journal 91 (11): 287s–302s.

      54 54 Xiao, Y. and Den Ouden, G. (1990). A study of GTA weld pool oscillation. Welding Journal 69 (8): 289s–293s.

      55 55 Xiao, Y.H. and Den Ouden, G. (1993). Weld pool oscillation during GTA welding of mild steel. Welding Journal 72: 428s–434s.

      56 56 Howse, D.S. and Lucas, W. (2000). Investigation into arc constriction by active fluxes for tungsten inert gas welding. Science and Technology of Welding and Joining 5 (3): 189–193.

      57 57 Tanaka, M., Shimizu, T., Terasaki, T. et al. (2000). Effects of activating flux on arc phenomena in gas tungsten arc welding. Science and Technology of Welding and Joining 5 (6): 397–402.

      58 58 Kuo, M., Sun, Z., and Pan, D. (2001). Laser welding with activating flux. Science and Technology of Welding and Joining 6 (1): 17–22.

      59 59 Yu, P. and Kou, S. Research in Progress. Madison, WI: University of Wisconsin.

      60 60 Wei, P.S., Wang, S.C., and Lin, M.S. (1996). Transport phenomena during resistance spot welding. Journal of Heat Transfer 118 (3): 762–773.

      61 61 Wei, P.S. and Wu, T.H. (2010). Effects of electrical current on transport processes in resistance spot welding. Science and Technology of Welding and Joining 15 (6): 448–456.

      62 62 Wei, P.S. and Wu, T.H. (2011). Magnetic property effect on transport processes in resistance spot welding. Journal of Physics D: Applied Physics 44 (32): 325501.

      63 63 Wei, P.S. and Wu, T.H. (2012). Electrical contact resistance effect on resistance spot welding. International Journal of Heat and Mass Transfer 55 (11): 3316–3324.

      64 64 Wei, P.S. and Wu, T.H. (2013). Numerical study of electrode geometry effects on resistance spot welding. Science and Technology of Welding and Joining 18 (8): 661–670.

      65 65 Wei, P.S. and Wu, T.H. (2014). Effects of electrode contact condition on electrical dynamic resistance during resistance spot welding. Science and Technology of Welding and Joining 19 (2): 173–180.

      66 66 Yao, Q., Luo, Z., Li, Y. et al. (2014). Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Materials & Design 63: 200–207.

      67 67 Li, Y., Lin, Z., Shen, Q., and Lai, X. (2011). Numerical analysis of transport phenomena in resistance spot welding process. Journal of Manufacturing Science and Engineering 133 (3): 031019.

      68 68 Li, Y.B., Shen, Q., Lin, Z., and Hu, S.J. (2011). Quality improvement in resistance spot weld of advanced high strength steel using external magnetic field. Science and Technology of Welding and Joining 16 (5): 465–469.

      69 69 Li, Y.B., Li, Y.T., Shen, Q., and Lin, Z.Q. (2013). Magnetically assisted resistance spot welding of dual‐phase steel. Welding Journal 92 (4): 124s–132s.

      70 70 Li, Y., Luo, Z., Yan, F. et al. (2014). Effect of external magnetic field on resistance spot welds of aluminum