Группа авторов

Halogen Bonding in Solution


Скачать книгу

properties governed by noncovalent forces, most often the hydrogen bond. As expected, the distinct characteristics of the halogen bond, such as high directionality, strength, polarizability, and hydrophobicity, provide enticing prospects for the development of novel materials. In this section, select examples of halogen bonding materials are presented. For more information pertaining to halogen bond materials, recent reviews have been published [7,169].

      1.5.2 Liquid Crystals

      The LC state is a mesophase, having properties of both crystalline solids and isotropic liquids, with extensive real‐world applications. A variety of different noncovalent interactions are employed to achieve desired LC properties (e.g. low temperature formation, unique light modification, predictable phase transition, etc.), but hydrogen bonding is by far the most common [170]. The success of hydrogen bond‐mediated LCs is largely attributed to its directionality, thereby inspiring evaluations using the more stringent halogen bond. In fact, LCs incorporating halogen bonds have exhibited unique properties dissimilar to hydrogen bonding derivatives. This section provides select examples of how the halogen bond has been applied to produce different classes of LCs. For further reference, a recent review of the topic has been published [171].

Chemical reaction depicts the first example of a halogen bonding LC developed by Bruce. Alkyl chains R related to LC behavior.

      The Li group doped commercially available achiral LCs with chiral halogen bonding molecular switches to produce helical cholesteric LCs (CLCs) [180]. The CLCs operate reversibly under thermal or light response. Reflection colors for these CLCs were temperature dependent, producing red, green, and blue colors. Additionally, the helical twisting power (HLC), known as the amount of chiral LC formation, could be altered by UV light interacting with the halogen bond CLCs. This concept shows that halogen bonding can be used to optimize doped LC systems to create photonic devices.

      1.5.3 Supramolecular Polymers

      1.5.3.1 LC Polymers

Chemical reaction depicts the first example of a photoactive halogen bonding LC developed by Priimagi et al. Chemical reaction depicts the first example of a polymeric halogen bonding LC.

      (Xu et al. [174].)

      1.5.3.2 Light‐sensitive Polymers

      A seminal study of light‐sensitive polymers compared hydrogen and halogen bond‐based azobenzene photopolymers [183]. It was found that the halogen‐bonded polymers had a greater light‐induced mass transport efficiency than the hydrogen bond analogues. The use of halogens did not change the photophysical or electronic properties significantly, suggesting that incorporation of halogen bond motifs into other known systems could easily modulate performance. Later studies of azobenzene polymers as light‐induced surface patterning polymers show that halogen bonding species outperform hydrogen bonding ones in terms of patterning efficiency, which the authors attribute to the high directionality of the halogen bond. The efficiency was also shown to be directly proportional with halogen bond strength [184].

      1.5.3.3 Block Polymers

      Block copolymers consist of two or more covalently linked polymers. The Taylor lab developed a reversible addition‐fragmentation chain transfer (RAFT) polymerization where amine acceptors were combined with iodoperfluorobenzene halogen bond donors,