M.G., Sarwar, M.G., and Taylor, M.S. (2013). Chem. Soc. Rev. 42: 1667–1680.
147 147 Huber, S.M., Jimenez‐Izal, E., Ugalde, J.M., and Infante, I. (2012). Chem. Commun. 48: 7708.
148 148 Palusiak, M. (2010). J. Mol. Struct.‐THEOCHEM 945: 89–92.
149 149 Wolters, L.P. and Bickelhaupt, F.M. (2012). ChemistryOpen 1: 96–105.
150 150 Alkorta, I., Rozas, I., and Elguero, J. (1998). J. Phys. Chem. A 102: 9278–9285.
151 151 Rosokha, S.V., Stern, C.L., and Ritzert, J.T. (2013). Chem. Eur. J. 19: 8774–8788.
152 152 Rosokha, S.V., Stern, C.L., Swartz, A., and Stewart, R. (2014). Phys. Chem. Chem. Phys. 16: 12968–12979.
153 153 Riley, K.E. and Hobza, P. (2013). Phys. Chem. Chem. Phys. 15: 17742.
154 154 Eskandari, K. and Zariny, H. (2010). Chem. Phys. Lett. 492: 9–13.
155 155 Riley, K.E. and Hobza, P. (2008). J. Chem. Theor. Comput. 4: 232–242.
156 156 Jeziorski, B., Moszynski, R., and Szalewicz, K. (1994). Chem. Rev. 94: 1887–1930.
157 157 Williams, H.L. and Chabalowski, C.F. (2001). J. Phys. Chem. A 105: 646–659.
158 158 Valadares, N.F., Salum, L.B., Polikarpov, I. et al. (2009). J. Chem. Inf. Model. 49: 2606–2616.
159 159 Auffinger, P., Hays, F.A., Westhof, E., and Ho, P.S. (2004). Proc. Natl. Acad. Sci. USA 101: 16789–16794.
160 160 Xu, Z., Yang, Z., Liu, Y. et al. (2014). J. Chem. Inf. Model. 54: 69–78.
161 161 Ford, M.C. and Ho, P.S. (2016). J. Med. Chem. 59: 1655–1670.
162 162 Rezac, J. and Hobza, P. (2011). Chem. Phys. Lett. 506: 286–289.
163 163 Dobeš, P., Řezáč, J., Fanfrlík, J. et al. (2011). J. Phys. Chem. B 115: 8581–8589.
164 164 Zimmermann, M.O., Lange, A., and Boeckler, F.M. (2015). J. Chem. Inf. Model. 55: 687–699.
165 165 Lu, Y., Shi, T., Wang, Y. et al. (2009). J. Med. Chem. 52: 2854–2862.
166 166 Jorgensen, W.L. and Schyman, P. (2012). J. Chem. Theor. Comput. 8: 3895–3901.
167 167 Case, D.A., Cheatham, T.E., Darden, T. et al. (2005). J. Comput. Chem. 26: 1668–1688.
168 168 Carter, M., Rappé, A.K., and Ho, P.S. (2012). J. Chem. Theor. Comput. 8: 2461–2473.
169 169 Saccone, M. and Catalano, L. (2019). J. Phys. Chem. B 123: 9281–9290.
170 170 Paleos, C.M. and Tsiourvas, D. (2001). Liq. Cryst. 28: 1127–1161.
171 171 Wang, H., Bisoyi, H.K., Urbas, A.M. et al. (2019). Chem. Eur. J. 25: 1369–1378.
172 172 Nguyen, H.L., Horton, P.N., Hursthouse, M.B. et al. (2004). J. Am. Chem. Soc. 126: 16–17.
173 173 Cavallo, G., Terraneo, G., Monfredini, A. et al. (2016). Angew. Chem. Int. Ed. 55: 6300–6304.
174 174 Xu, J., Liu, X., Lin, T. et al. (2005). Macromolecules 38: 3554–3557.
175 175 Priimagi, A., Saccone, M., Cavallo, G. et al. (2012). Adv. Mater. 24: OP345–OP352.
176 176 Vanderkooy, A. and Taylor, M.S. (2015). J. Am. Chem. Soc. 137: 5080–5086.
177 177 McAllister, L.J., Präsang, C., Wong, J.P.W. et al. (2013). Chem. Commun. 49: 3946.
178 178 Saccone, M., Palacio, F.F., Cavallo, G. et al. (2017). Faraday Discuss. 203: 407–422.
179 179 Vapaavuori, J., Siiskonen, A., Dichiarante, V. et al. (2017). RSC Adv. 7: 40237–40242.
180 180 Wang, H., Bisoyi, H.K., Wang, L. et al. (2018). Angew. Chem. Int. Ed. 57: 1627–1631.
181 181 Berger, G., Soubhye, J., and Meyer, F. (2012). Polym. Chem. 19: 3559–3580.
182 182 Cho, C.M., Wang, X., Li, J.J. et al. (2013). Liq. Cryst. 40: 185–196.
183 183 Priimagi, A., Cavallo, G., Forni, A. et al. (2012). Adv. Funct. Mater. 22: 2572–2579.
184 184 Saccone, M., Dichiarante, V., Forni, A. et al. (2015). J. Mater. Chem. C 3: 759–768.
185 185 Vanderkooy, A. and Taylor, M.S. (2017). Faraday Discuss. 203: 285–299.
186 186 Quintieri, G., Saccone, M., Spengler, M. et al. (2018). Nanomaterials 8: 1029.
187 187 Tepper, R., Bode, S., Geitner, R. et al. (2017). Angew. Chem. Int. Ed. 56: 4047–4051.
188 188 Dahlke, J., Tepper, R., Geitner, R. et al. (2018). Polym. Chem. 9: 2193–2197.
189 189 Meazza, L., Foster, J.A., Fucke, K. et al. (2013). Nat. Chem. 5: 42–47.
190 190 Robertson, C.C., Perutz, R.N., Brammer, L., and Hunter, C.A. (2014). Chem. Sci. 5: 4179–4183.
191 191 Houbenov, N., Milani, R., Poutanen, M. et al. (2014). Nat. Commun. 5: 4043.
Note
1 1 The two other known halogens are astatine and tennessine. These two halogens are radioactive with short half‐lives. Both are not often considered in the context of halogen bonding, although there has been some computational evaluation of astatine halogen bonding [1].
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.