4. Summary
In this chapter, both ADF-STEM and STM/STS demonstrate powerful atomic resolution imaging capability in the direct probing of atomic defects in 2D transition metal dichalcogendies. Point defects such as vacancy and antisite, grain/domain boundaries have been characterized by atomically resolved ADF-STEM or STM imaging, together with spectroscopy to reveal the electronic states induced by defects and low-symmetry lattice-translational stackings. Time sequential STEM to track the atomic flow also elucidate the different states involved in defects’ evolution to deduce the primary kinetic pathways in the atomic migration.
In the 2D materials research, STEM/STM show their versatility in revealing the nanophysics of defects: both atomic characterization of the structures of defects and translational stackings and spectroscopic measurement of the electronic states induced.
Acknowledgments
JH and CJ acknowledge the financial support provided by the National Science Foundation of China under grant nos. 51772265, 51761165024 and 61721005, the Zhejiang Provincial Natural Science Foundation under Grant No. D19E020002, and the 111 project under no. B16042. MX acknowledges the support provided by a Collaborative Research Fund (C7036-17W) and a General Research Fund (No. 17327316) from the Research Grant Council, Hong Kong Special Administrative Region. CJ and MX also acknowledge the financial support provided by the NSFC/RGC joint research scheme (Nos. 51761165024 and N HKU732/17). The authors acknowledge Dr. Wei Huang, Feng Jiang, and Dr. Yipu Xia for their kind assistance in preparing this chapter.
References
[1] W. Zhou, et al., Intrinsic structural defects in monolayer molybdenum disulfide, Nano. Lett. 13, 2615–2622 (2013).
[2] Y. Huang, et al., Bandgap tunability at single-layer molybdenum disulphide grain boundaries, Nat. Commun. 6, 6298 (2015).
[3] T. H. Ly, et al., Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries, Nat. Commun. 7, 10426 (2016).
[4] S. Manzeli, et al., 2D transition metal dichalcogenides, Nat. Rev. Mater. 2, 17033 (2017).
[5] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699–712 (2012).
[6] C. Ataca, H. Sahin, S. Ciraci, Stable, Single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).
[7] Lf. Mattheis, Band structures of transition-metal-dichalcogenide layer compounds, Phys. Rev. B 8, 3719–3740 (1973).
[8] K. F. Mak, K. L. He, J. Shan, T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7, 494–498 (2012).
[9] H. L. Zeng, J. F. Dai, W. Yao, D. Xiao, X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7, 490–493 (2012).
[10] T. Cao, et al., Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3, 887 (2012).
[11] S. F. Wu, et al., Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization, ACS Nano. 7, 2768–2772 (2013).
[12] B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2, Nat. Mater. 12, 815–820 (2013).
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Singlelayer MoS2 transistors, Nat. Nanotechnol. 6, 147–150 (2011).
[14] S. B. Desai, et al., MoS2 transistors with 1-nanometer gate lengths, Science 354, 99–102 (2016).
[15] S. Helveg, et al., Atomic-scale structure of single-layer MoS2 nanoclusters, Phys. Rev. Lett. 84, 951–954 (2000).
[16] X. S. Wang, H. B. Feng, Y. M. Wu, L. Y. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135, 5304–5307 (2013).
[17] Y. H. Lee, et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater. 24, 2320–2325 (2012).
[18] H. P. Komsa, et al., Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping, Phys. Rev. Lett. 109, 035503 (2012).
[19] J. H. Hong, et al., Exploring atomic defects in molybdenum disulphide monolayers, Nat. Commun. 6, 6293 (2015).
[20] Q. Feng, et al., Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys, Adv. Mater. 26, 2648–2653 (2014).
[21] Q. L. Feng, et al., Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition, ACS Nano. 9, 7450–7455 (2015).
[22] C. Gong, et al., Metal contacts on physical vapor deposited monolayer MoS2, ACS. Nano. 7, 11350–11357 (2013).
[23] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010).
[24] K. K. Liu, et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano. Lett. 12, 1538–1544 (2012).
[25] Y. M. Shi, et al., van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano. Lett. 12, 2784–2791 (2012).
[26] Y. C. Lin, D. O. Dumcencon, Y. S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9, 391–396 (2014).
[27] J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires, Nature, 440, 69–71 (2006).
[28] S. Hofmann, G. Csanyi, A. C. Ferrari, M. C. Payne, J. Robertson, Surface diffusion: The low activation energy path for nanotube growth, Phys. Rev. Lett. 95, 036101 (2005).
[29] L. E. Jensen, et al., Role of surface diffusion in chemical beam epitaxy of InAs nanowires, Nano. Lett. 4, 1961–1964 (2004).
[30] C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis. (The MIT Press, 1970).
[31] J. Hong, Y. Pan, Z. Hu, D. Lv, C. Jin, W. Ji, J. Yuan, Z. Zhang, Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide, Nano Lett. 17, 3383–3390 (2017).
[32] M. Chhowalla, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5, 263–275 (2013).
[33] H. Liu, et al., Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations, Phy.