Richard I. G. Holt

Essential Endocrinology and Diabetes


Скачать книгу

variations (polymorphisms) at specific nucleotides between different individuals. On SNP arrays, the spots on the glass slide represent the different sequences at each SNP. As an individual’s paired chromosomes come one from each parent, this means that at any one SNP, there are often two different sequences (one from the mother, one from the father; this is called heterozygosity). Across stretches of DNA, SNP arrays can identify regions showing ‘loss of heterozygosity’ (i.e. there is no variation in the signal), which is indicative of deletion of either the maternal or paternal copy, or altered ratio of signals indicative of duplication.

      Diagnosing mutations in single genes by polymerase chain reaction and sequencing

      With the discovery of more and more disease‐causing genes for monogenic disorders (i.e. where a single gene is at fault), genetic testing has expanded rapidly into clinical endocrinology and diabetes. Increasingly precise prediction is possible from correlating genotype (i.e. the gene and the position of the mutation within that gene) and phenotype (i.e. the clinical appearance and course of the patient). For instance, in type 2 multiple endocrine neoplasia (MEN2; Chapter 10) certain mutations in the RET proto‐oncogene have never been associated with phaeochromocytoma, normally one of its commonest features. In contrast, other RET mutations predict medullary carcinoma of the thyroid at a very young age, thus instructing when earlier total thyroidectomy is needed. Genetically defining certain forms of monogenic diabetes is now dictating choice of therapy (Case history 11.3).

      Since sequencing the human genome in 2003 technology has advanced enormously, greatly bringing down cost. What was once achieved by cutting‐edge multi‐million pound international research consortia is now possible within an individual laboratory in a matter of days for a few hundred pounds, dollars or euros. In addition to the ethical implications of holding data on an individual’s entire genome, the bioinformatics required for analysis is massive. Nevertheless, via next‐generation sequencing, defining a patient’s entire genome is fast becoming a diagnostic reality. In its current, most prevalent form, all exons from all genes are covered in whole‐exome sequencing (WES). Based on current research, it is to be expected that this will transition rapidly to whole‐genome sequencing (WGS) that includes the 98.5% which is non‐coding and capture all the critical regulatory information in promoters and enhancers.

      Ultrasound

      Computed tomography and magnetic resonance imaging

Schematic illustration of the basic principles of the polymerase chain reaction. (a) Starting DNA. (b) The double helix is separated into two single strands by heating to 94 °C. (c) Cooling from this high temperature allows binding of user-designed short stretches of DNA (primers) that are complementary to the opposite strands at each end of the region to be amplified. (d) DNA polymerase catalyzes the addition of deoxynucleotide residues according to the complementary base pairs of the template strand. (e) Once complete, two double-stranded sequences arise from the original target DNA.

      Contrast agents are useful for both CT and MRI scanning (Figure