Дэвид Дарлинг

Эта странная математика. На краю бесконечности и за ним


Скачать книгу

доктора Моро. СПб.: Азбука-Аттикус, 2018.

      6

      Цитируется по изданию: Математика XIX века. Геометрия. Теория аналитических функций. Под ред. А. Н. Колмогорова, А. П. Юшкевича. М.: Наука, 1981.

      7

      В русском языке для многомерных политопов устоялось название из стереометрии – “многогранник” (или еще “полиэдр”), так как математики называют многомерные ячейки гранями. – Прим. науч. ред.

      8

      Эбботт Э. Э. Флатландия. М.: Мир, 1976.

      9

      Хинтонъ С. Г. Четвертое измѣренiе и эра новой мысли. Петроградъ: Книгоиздательство “Новый человѣкъ”, 1915.

      10

      Центральный уголовный суд Англии и Уэльса. Здание суда традиционно носит название улицы, на которой оно расположено.

      11

      По состоянию на январь 2020 года известных нам знаков числа пи уже 50 триллионов. – Прим. науч. ред.

      12

      Септиллион – это триллион триллионов, или 1024. – Прим. науч. ред.

      13

      От англ. frequency – “частота”.

      14

      Борхес Х. Л. Вавилонская библиотека. Рассказы. Харьков: Фолио, 1999.

/9j/4RjqRXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAiAAAAcgEyAAIAAAAUAAAAlIdpAAQAAAABAAAAqAAAANQACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENDIDIwMTggKFdpbmRvd3MpADIwMjE6MDI6MTggMDQ6MjQ6NDMAAAOgAQADAAAAAf//AACgAgAEAAAAAQAAA9WgAwAEAAAAAQAAAuIAAAAAAAAABgEDAAMAAAABAAYAAAEaAAUAAAABAAABIgEbAAUAAAABAAABKgEoAAMAAAABAAIAAAIBAAQAAAABAAABMgICAAQAAAABAAAXsAAAAAAAAABIAAAAAQAAAEgAAAAB/9j/7QAMQWRvYmVfQ00AAv/uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAHgAoAMBIgACEQEDEQH/3QAEAAr/xAE/AAABBQEBAQEBAQAAAAAAAAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggFAwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNUZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/AO9Tp4TwipaEoTwnhJS0JJ4SSUsknTJKWUX2MrYbLHBjG/SceBJj+KckCSTAHJWffc+4yd7KhLq9rXbjt9s+9vpP3O/7b/waSnQmRI1B1CdZ+DnMLCx5+gQ1u0l4ge31ZJc+uve2z+ef+Z/OWq+kpdJJOkpSZOkkpaEyklCSmKZShMkp/9D0ABPCcBOAipaE8J4ShJS0JQpQmhJTEhRgkwOVMrmvrX1WWP6PjSX2CMx7fzWH/tN/13/D/wDBfov8I/YlOlk5ByWmvFcHHmsgt95afd6e9zGfR/m9z1n5BDaN1lja3OeWekCy4gifTf8A0cb97vfXX6f/AG3esD6vPw8fNtFpFV1lcVbiawS0+o/9Kz9H7Nn0bVu1sqPpvFdbagSA9vp2Mn/CM3Vsqx/f6u70vof4XKr/AECSkrsrqbv0zXVNDdC9n0JI2sNlYZvf+Yz1dldf8v8Am1pVPNAFb4LGgD27SWkmXeoGF37276axyMKsOv8AtVTMapkuBr2vqn2v3Ustqp2+6t9eRs9/8yp4vW/q+wMYzLDWMLtpLLNdxJ3Q9ns/k1/4NJTvxCdYPSfrJTmdVd01rIpLXfZ7nOEvsZH6Otjd36O5nqWsfZZ6z7PzFvJKUnSSSUpJJJJSyaFJKElP/9H0MBSASSRUvCSUJ0lLJoUoVTqPUsTptItyXH3u211t+k88u2z+axvussd9BJSLrHVa+l4vrEB975GPUTG5wjc9/wDwNO79L/21/OWLgn7rZdbD7bXPe4ls+9xLnv4/f9yu5mXZ1PL+15WlbjAY3X06x9Blb7PSa76X5v6W5RazAAZ+kfWHEho9NrpA19x9Xd9Fn5lf5/8AOJKaLse7IBba7SZDK6w2QYdrtZu9u389BPTqz+kJMRI5Ex+dyNy1vs1Fgmqyq0NEtB3V/wBl/wBo/Q7v+uKFmHscX2sNBDdwY8EuIOjbK9nqNf7m7f8ABMSU5xwA5rQRuA1DXe7T6U/S/wC/on2NwMiI2k6iP+/+7+0rYqcSQ39I6JBYTY6HfR+jvcz3f8AnfRXqyxza3j6bQ92h/dc/9Pt/zP8AjElNZuKxhLmD0S128PaXAh7YdW5st3sc1667oHXLM9xw82BnAF1b2iG3MH0nAABrMitv85V+ez9LV/hFzXoMeRsu3OdIa3cBIE7ntss21/mO/OTfYbi3f/hK3BzH1vY9zC36D2vFjbWWM2/mfueokp9AShY3QPrBX1BteJlOjqQBE7YbdsALra9o2Muc33WY/wDIu9H9GtpJSyUJ0klLJJ4ShJT/AP/S9FCdJOipSSSYlrQXOIa1oJc5xgADUuc791qSkWXlUYePZk5DttVQlx0k/wAhm6Pe/wDMXC9Qy7er5z8ggOkhlTZIYxh+jVvsdVX/ACrbP9N+YrvWOtNz8ra2tl2BUQaPUcWjd+ffkUttqs93urr9T/Bf8e9UDiugvDw+su9rTq0B2su9Vzd7d38rI/0v/BpKRtovbDmhnhNj2OmPzK2sc79Lv/7c/fThuW55BYQXNhweCHANjSPdV6f/AB7rPS/kIpqefcHix0E7iHGS3X6bbP8Azhn7ik2vJ2enuFrXBp3TA7bamemRsY1zvakpD9lyHAktLizR1u9xaSPd7H41b91bPzN376g2q4mfR9QgiTucTMcOa5tW7j6SsBtwfEHcBtLdxa1g12MDnf8Ak/8ArqkaLHSLJ3k+9rXEv26fzdU2f9N/6T/BssSU1d91dbSZa5vurcXOILiJdt93pN/62k51zdNtggSNwaIMw10B7Wu9zP5y1n/gi0PTya3GWWhrhpua4B4/qubu9L6X/XEF4sHuZU2mZ3W7RDhp/Jr9lbdm/wD0n+kSU1TfZMbC6DMtgEj6LdsWOr/lKIucwGxlJ2sAlxaANTt/mnP2f5nv/tq0+66tpa6oVgiHWVhp1Ou/e8F9D9v5jX7PTUPtmQ57i0eqxpOrBW0kAz7mMZ6bvpfo6929JSHfjl4LbPTe0yfSDmPG3hzrYf6b6n+9rXrrfq/1w9SFmLfu+2YwDnPcAPVZJb62xga1t1f/AGpYz9H7/UXOvycssc19RZU0AzXTtGnul9nu2f8ACfpa1XY65tjHbjTkUGWwXBzHHSa3Nd5+zZ6iSn0JJY31d68ep1ux8kBudSJJAhtzB7ftFbPzdrv5+tn0Pp/1NlJSkkk6Sn//0/R0k6ZFSly31m6tdlB/TenGt4YR9oLi73vadzaK3M/Nrfs9Tb6nq2fovzFb+sv1gPTv1Oh3pZD2y/II0rkfo2M3ez17P/Av/PfMVMtcz1Meuy+q4toxnlzGMfpv/m/0eU72Vv8AU9HK/wCGSUi9LFLv0ldwytwbVX6TKQ4xDrNpfs9R2302UM/Sf8ZapuwLWn1hbcdn5zYDYg/Sb+jb9Fv+ERPWppcW2XU0nX1RZV6RBn89pYz1bN3+its/0V/6P1lI5trnkU1veKz+idZWxzSWn8/e7/X/ALbSUiNVtTf5+4wAGbq2nc6RtY/3bPT3fQ3f+kkUHKx7CXve94JDg5sAyNm30I+n/wAI9v76nXly0syHEHh17g5jTPPphz/3Bt/8E+zqf2yvZtrOplorLdktMVtGPvs/Rb/o7foJKaXUOp5HTcN9gHrPfu+x1NHpjeQ2d9f85sZO6/ZZ+k/mf8Kr3RfrJldO6LX+1ss0WMbo50u3EO2ek00tt3tb/I+gua6z1AZGeMxjDZTiRXUwSA4N1tf/ACfUsZ/23XUrRycHqHRsanba5tNZYzMrOy2d5fc21j22V2fpnbv5v2f4OxJT0T/rDhnM3HLgvZu27bHPmS5zrqgxv6P+bfW/esbqH1vYzqVpax1uCRW2zJrdEPP6Rl3pvr3bmta5llT/ANz1a6/V/naL/q7ksxKrrftFeHQAbLrWBj3s2m3Fsxj+mb7W2+nbVZ6rMev9L/OfoVh5JrNr3M9QtcTtfbG9wnl+32fSb+Ykp7w5b3S59jXuPuh7i5p3DdNbnnc/d/If71D7SxmlvpQ4e1jWtLWQfa6uwWMfUxv8v1FkfVO4ZeO7p1vvsobvxAYbNZO1zNzS3e2ix/535l3/AHXW2/Hoqfq1jZ0LwGupdP5m57PT9bb/ADft/wCmkprfbKX7/TLj+cWgFkgHTbH6J30/oJvtjbtrHNL6q9HvLxAOga2v1t7Wub9K30f/AD4j2VYbwY3RMgT7ZJ2t9ObX+7a17Pb/AOjEG1uHa0Vute2CQ2IsBB93otZutf7nbf0dNf6T/jP0iSkDstlbw/Fu9LIpfuquY7c4vB0Jbu2Ma3/D1u9npfzvrVruek9XxerUOtp9ttRDcmg81vI/6VT9rvRsXHOwunPYSy/d6Us9JrXF5An9D6ja62+z+aUcTI/Z9wu6c51Vre0eyxrT7672bv5ix7Pptb6jElPoKSo9I6vj9VoL6xsuq2jIp19jnbtu17mt9Rj9jtn/AIIr6Sn/1PR1ldf6ucCgUY/uzcgEVNaNzmNId+semP3dv6P/ALc/MWhmZLMKh19wdtbAgAkyTtG7YHOaz9964fI+2dSsvyGNyMh9x9obQ/Y8tBrZstDGU+nWx36FrrPZ/prfUsRU0m25LLyxn65e0bgw1m7Y53sJNlrf5X6S25/85/hKvSRq8CmxwczLa/IbUPVrbYKXuZy9rWtY1tjWu/nPQuuuR8mnrVjWMtOTcGw0N2XlreP3fZv/AJfvQT0zIaxxdgXGzufQsB4je1/o2+/3/mv/AOLSUo047GE2supDdSJLiBtdDdlwbtdZ/wAH+k2ImLW1hrpfjBtlZ9r27i8A+/a11m6j1Wu/m9mz1P8Az8fGHUXPID76xuG0MrudZ7du8tJxt7m/o2O/nf3P55FsxcoCxtGPfkOLj6bXsurBMTvdVc30/wBPZ7/zPf8A8YkpA2w7Q5hbQ2xwZWRZYRodu31Xek/12P8Afaz8/wDwSXUaRV0rLOPUbeoPrsdXkG0h4EN3bBtbt24+/wDnP8KtKnA6vWx15ZYXMaTL2kkxtsnSvfu3fQ9L2fzn+E/SJqsXNczfTj2OY4jba5zi4sYfVbvJFf7zn+xn88/0/TSU+bZf26qjc1myoQTtIIAGg0aXbW7Vf+q7t2Jk49m7aHks28SWjeNP6n9RW3U+l1/IwsXHflPxHv8AWFbdzKgff+lc4+mxzXfoGeo9SwqPst7w7E+x2PDbAxu0tc0jbuYaHPr9rvZZV++kph1V2Y5tY3xW153b77W/SDd+9jPperW3b9NYGRYMjJ2YrC5rRsrY0GSG8ubXL3N3LpeoXva0+m3dA+jAP/R/OXM5ORdkk12Vhrh7wTtZEfnW/wBZg/O+ggoOx9XsfIo6njPfWxpaLN4cR9EtcyxrgT+85n/XNi6xmScQWFmKHPcdtjnRtmNfzA31dv8Ag/8AhP5xY3+Lx7s9nUWtAe6sUtf7mjaxxsG5gdbj+3d/KW7kdCufebS7dUwtYXOLPoD3ep6ddjtjXP32bEVNezqF7mCp1dePubtcJILmnX8zZ6LPU/wTG+mqZFd7nilx2bi03PY1riSP8IHD1KGbf5vZ7P8AwVamN0oWWbrdt9bw/wDRixoc/e13qCqsWNc279zf+j9VGHR+pmhleTifaRVWDS6KWONg9vu2Xua39Ftb6m7/ALdSU4tmI4OLrHOymkhrrarSyDHta9lzamus2/znp2favZ+j/wCEZ9pFQb9iJqq2yA21zG/mj0nb32u3P/mLHvZ/o1sX9N6rbbW3DptfjtIDLLto2idr2h3r2b8djmfn/T/8EQMjoHXLnR9mrsnUata0Rqyr0vX2tpd9F792RkMSU0en5lvSsg5mM8W22Cb6yS5j6SQ6X6HZ9H25P+D/AO3Kl3OBn43UMVuVjO3Vklrh3a5v063f1Z+l/hGfpGLjLPqv1tjyasEObJcQ2xskvH8q1/53857