Jeffrey McCullough

Transfusion Medicine


Скачать книгу

Simon T, Marcus C, Myhre B, Nelson E. Effects of AS‐3 nutrient‐additive solution on 42 and 49 days of storage of red cells. Transfusion 1987; 27(2):178–182.

      24 24. American Association of Blood Banks; Standards Program Committee. Standards for Blood Banks and Transfusion Services, 31st edn. Bethesda, MD: American Association of Blood Banks, 2018.

      25 25. Kleinman S, Busch MP, Murphy EL, et al. The National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study (REDS‐III): a research program striving to improve blood donor and transfusion recipient outcomes. Transfusion 2014; 54(3 pt 2):942–955.

      26 26. Karafin MS, Bruhn R, Westlake M, et al. Demographic and epidemiologic characterization of transfusion recipients from four US regions: evidence from the REDS‐III recipient database. Transfusion 2017; 57(12):2903–2913.

      27 27. Kanias T, Stone M, Page GP, et al. Frequent blood donations alter susceptibility of red blood cells to storage‐ and stress‐induced hemolysis. Transfusion 2019; 59(1):67–78.

      28 28. Kanias T, Lanteri MC, Page GP, et al. Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS‐III RBC‐Omics study. Blood Adv 2017; 1(15):1132–1141.

      29 29. Page G, Kanias T, Lanteri MC. GWAS of osmotic hemolysis in 12,352 healthy blood donors identifies red cell genetic variants associated with steady state hemolysis in patients with sickle cell disease. Blood 2017; 130(Suppl 1):1117.

      30 30. Brunskill S, Thomas S, Whitmore E, et al. What is the maximum time that a unit of red blood cells can be safely left out of controlled temperature storage? Transfus Med Rev 2012; 26(3):209–223.e3.

      31 31. Fung MK, Eder A, Spitalnik SL, Westhoff CM, eds. Technical Manual, 19th edn. Bethesda, MD: American Association of Blood Banks, 2017.

      32 32. Valeri CR, Ragno G, Pivacek LE, et al. An experiment with glycerol‐frozen red blood cells stored at −80°C for up to 37 years. Vox Sang 2000; 79(3):168–174.

      33 33. Valeri CR, Srey R, Tilahun D, Ragno G. The in vitro quality of red blood cells frozen with 40 percent (wt/vol) glycerol at −80°C for 14 years, deglycerolized with the Haemonetics ACP 215, and stored at 4°C in additive solution‐1 or additive solution‐3 for up to 3 weeks. Transfusion 2004; 44:990–995.

      34 34. Lecak J, Scott K, Young C, et al. Evaluation of red blood cells stored at −80°C in excess of 10 years. Transfusion 2004; 44(9):1306–1313.

      35 35. Bandarenko N, Hay SN, Holmberg J, et al. Extended storage of AS‐1 and AS‐3 leukoreduced red blood cells for 15 days after deglycerolization and resuspension in AS‐3 using an automated closed system. Transfusion 2004; 44(11):1656–1662.

      36 36. Smith A. Prevention of hemolysis during freezing and thawing of red blood cells. Lancet 1950; 2:910.

      37 37. Sloviter H. Recovery of human red blood‐cells after freezing. Lancet 1951; 1:823–824.

      38 38. Chaplin H, Mollison P. Improved storage of red cells at 22°C. Lancet 1953; 1:215–218.

      39 39. Tullis JL. Studies on the in vivo survival of glycerolized and frozen human red blood cells. J Am Med Assoc 1958; 168(4):399.

      40 40. Merymann H. The cryopreservative of blood cells for clinical use. In: Brown E, ed. Progress in Hematology, vol. 11. New York: Grune & Stratton; 1979, pp. 193–227.

      41 41. Valeri C. Frozen blood. N Engl J Med 1966; 275:365–431.

      42 42. Rowe AW, Eyster E, Kellner A. Liquid nitrogen preservation of red blood cells for transfusion. Cryobiology 1968; 5(2):119–128.

      43 43. Latham A, Steimen L. Development of an expendable liner and automated solution system for red cell glycerolization. Vox Sang 1962; 7:102–103.

      44 44. Meryman HT, Hornblower M. A method for freezing and washing red blood cells using a high glycerol concentration. Transfusion 1972; 12(3):145–156.

      45 45. Valeri CR. Simplification of the methods for adding and removing glycerol during freeze‐preservation of human red blood cells with the high or low glycerol methods: biochemical modification prior to freezing. Transfusion 2003; 15(3):195–218.

      46 46. Henkelman S, Noorman F, Badloe JF, Lagerberg JWM. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Vox Sang 2015; 108(2):103–112.

      47 47. Valeri CR, Zaroulis CG. Rejuvenation and freezing of outdated stored human red cells. N Engl J Med 1972; 287(26):1307–1313.

      48 48. Buchholz D, Charette J, Bove J. Preparation of leukocyte‐poor red blood cells using the IBM 2991 blood cell processor. Transfusion 1978; 18(6):653–662.

      49 49. Tenczar FJ. Comparison of inverted centrifugation, saline washing, and dextran sedimentation in the preparation of leukocyte‐poor red cells. Transfusion 1973; 13(4):183–188.

      50 50. Polesky HF, McCullough J, Helgeson MA, Nelson C. Evaluation of methods for the preparation of HL‐A antigen‐poor blood. Transfusion 1973; 13(6):383–387.

      51 51. Greenwalt TJ, Gajewski M, McKenna JL. A new method for preparing buffy coat‐poor blood. Transfusion 1962; 2(4):221–229.

      52 52. Blajchman MA. Transfusion‐associated immunomodulation and universal white cell reduction: are we putting the cart before the horse? Transfusion 1999; 39(7):665–670.

      53 53. Kao K, Mickel M, Braine H, et al. White cell reduction in platelet concentrates and packed red cells by filtration: a multicenter clinical trial. The Trap Study Group. Transfusion 1995; 35(1):13–19.

      54 54. Bordin JO, Heddle NM, Blajchman MA. Biologic effects of leukocytes present in transfused cellular blood products. Blood 1994; 84:1703–1721.

      55 55. Freedman JJ, Blajchman MA, McCombie N. Canadian Red Cross Society Symposium on Leukodepletion: Report of Proceedings. Transfus Med Rev 1994; 8(1):1–14.

      56 56. Ching EP, Poon M‐C, Neurath D, Ruether BA. Red blood cell alloimmunization complicating plasma transfusion. Am J Clin Pathol 1991; 96(2):201–202.

      57 57. Churchill WH, Schmidt B, Lindsey J, et al. Thawing fresh frozen plasma in a microwave oven: a comparison with thawing in a 37 °C waterbath. Am J Clin Pathol 1992; 97(2):227–232.

      58 58. Thompson KS, O’Kell RT. Comparison of fresh‐frozen plasmas thawed in a microwave oven and in a 37°C water bath. Am J Clin Pathol 1981; 75(6):851–853.

      59 59. Scott E, Puca K, Heraly J, et al. Evaluation and comparison of coagulation factor activity in fresh‐frozen plasma and 24‐hour plasma at thaw and after 120 hours of 1 to 6°C storage. Transfusion 2009; 49(8):1584–1591.

      60 60. Allen CJ, Shariatmadar S, Meizoso JP, et al. Liquid plasma use during “super” massive transfusion protocol. J Surg Res 2015; 199(2):622–628.

      61 61. Callum JL, Karkouti K, Lin Y. Cryoprecipitate: the current state of knowledge. Transfus Med Rev 2009; 23(3):177–188.

      62 62. Pool JG, Shannon AE. Production of high‐potency concentrates of antihemophilic globulin in a closed‐bag system. N Engl J Med 1965; 273(27):1443–1447.

      63 63. Ness PM. Cryoprecipitate as a reliable source of fibrinogen replacement. JAMA J Am Med Assoc 1979; 241(16):1690.

      64 64. Gunson HH. Variables involved in cryoprecipitate production and their effect on factor VIII activity. Br J Haematol 1979; 43(2):287–295.

      65 65. Yazer MH, Stapor D, Triulzi DJ. Use of the RQI test for bacterial screening of whole blood platelets. Am J Clin Pathol 2010; 133(4):564–568.

      66 66. Sawant RB, Marathe AN. Pooled platelet product using the Acrodose plus system: evaluation of feasibility, safety and efficacy. Transfus Apher Sci 2013; 49(3):535–538.

      67 67. Tobian AAR, Fuller AK, Uglik K, et al. The impact of platelet additive solution apheresis platelets on allergic transfusion reactions and corrected count increment (CME). Transfusion. 2014; 54(6):1523–1529.

      68 68. Kacker S, Ness PM, Savage WJ, et al. The cost‐effectiveness of platelet