Группа авторов

The Handbook of Speech Perception


Скачать книгу

of speech deviation differed considerably from individual to individual in the small samples.

      The study of postlingually deafened individuals represents the best window onto the role played by auditory feedback in a well‐developed human control system. While the effects of hearing loss on speech are not immediate, both consonant and vowel errors emerge over time (Zimmermann & Rettaliata, 1981; Osberger & McGarr, 1982; Waldstein, 1990; Lane & Webster, 1991; Cowie & Douglas‐Cowie, 1992). Other effects on speech caused by a long‐term lack of auditory feedback are of a suprasegmental nature. These include a slower overall rate of speech, higher and more inconsistent pitch, overstressing syllables and words, and a greater mean intensity (Cowie, Douglas‐Cowie, & Kerr, 1982; Plant, 1984; Leder, Spitzer, & Kirchner, 1987; Waldstein, 1990; Lane & Webster, 1991; Cowie & Douglas‐Cowie, 1992). All of these factors contribute to the overall loss of intelligibility of speech.

      The study of vocal learning in birds has permitted more systematic studies of the effects of deafening at different ages of development. In a classic study by Lombardino and Nottebohm (2000) groups of zebra finches were deafened at intervals ranging from 81 days to six years. Changes in song were strongly correlated with age of deafening. The songs of birds deafened earlier (e.g. at three months) deteriorated much more quickly (approximately a week) compared to birds deafened between two and five years. The latter took more than a year to show quantifiable deficits.

      In birds, invasive ablation studies have shown that the relationship between acquired song and auditory feedback is not simple. Anatomical studies have revealed at least two distinct pathways for the vocal control of song that converge on the song motor cortex. One pathway is strongly influenced by the cortical premotor area HVC and the other has strong influences from the lateral magnocellular nucleus of the anterior nidopallium (LMAN). An oversimplification of the contributions of these two anatomical regions is that one controls the memorized song (HVC) and the other influences the variability of the pitch and amplitude of productions (LMAN). The role of auditory feedback in mediating the influence of these two systems is intriguing. It has been suggested that auditory feedback may influence the gain of the variability system (Bertram et al., 2014). When birds are deafened, the production of structured song is impaired (e.g. dropped syllables and deteriorated structure of syllables), but later, when LMAN is ablated, the effects of deafening are reversed, at least in those with moderate decline (Nordeen & Nordeen, 2010), and variability is reduced. The authors conclude that deafening induces song deterioration and LMAN activity contributes to that degradation. Thus, in birds, there are neural systems such as LMAN that play a direct role in determining the amount of vocal variability.

       Real‐time manipulations of auditory feedback

      Separate from clinical evidence, behavioral studies of auditory feedback in speech have been carried out for more than a century. In 1911 the otolaryngologist Étienne Lombard published “Le signe de l’élévation de la voix” (“The symptom of the raised voice”; Lombard, 1911), in which he noted a patient’s tendency to speak more loudly when a loud noise was transmitted to one ear. This became the first published evidence for a feedback mechanism by which real‐time speech perception could influence speech production (Brumm & Zollinger, 2011) and, more than 100 years later, the Lombard effect remains the most persistent and robust feedback phenomenon within psycholinguistic speech production research.

      A notable feature of real‐time speech corrections is that they appear to be largely involuntary and often occur without awareness. In one study, speakers who wore headphones persisted in raising their volume when loud noises were played, even when informed by an interviewer that they were doing so (Mahl, 1972). While learned inhibition of the Lombard effect in humans is possible (Pick et al., 1989), it remains persistent in spontaneous speech and has been observed in young children (Siegel et al., 1976) as well as Old World monkeys (Sinnott, Stebbins, & Moody, 1975), whales (Parks et al., 2011), and a multitude of songbird species (see Cynx et al., 1998; Kobayasi & Okanoya, 2003; Leonard & Horn, 2005).

Schematic illustration of perturbation (solid line) and average compensation (dots) of first formant frequency in hertz. The frequencies have been normalized to the mean of the baseline phase.

      (Source: Adapted from MacDonald, Goldberg, & Munhall, 2010).

      A notable exception to direct compensation occurs in response to delayed auditory feedback (DAF), wherein time delays are introduced between speech production and audition.