Группа авторов

Biosurfactants for a Sustainable Future


Скачать книгу

Ekwall, P. (1951). Micelle formation in sodium cholate solutions. Acta Acad. Abo., Ser. B 17: 1–10.

      81 81 Foerster, T. and Selinger, B. (1964). Concentration change of the fluorescence of aromatic hydrocarbons in micellar colloidal solution. Z. Naturforsch. 19a: 38–41.

      82 82 Dorrance, R.C. and Hunter, T.F. (1974). Absorption and emission studies of solubilization in micelles. 2. Determination of aggregation numbers and solubilizate diffusion in cationic micelles. J. Chem. Soc. Faraday Trans. 1 (70): 1572–1580.

      83 83 Chen, M. and Graetzel, J.K. (1974). Thomas, photochemical reactions in micelles of biological importance. Chem. Phys. Lett. 24.

      84 84 Geiger, M.W. and Turro, N.J. (1975). Pyrene fluorescence lifetime as a probe for oxygen penetration of micelles. Photochem. Photobiol. 22: 273–276.

      85 85 Kalyanasundaram, K. and Thomas, J.K. (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 99: 2039–2044.

      86 86 Nakajima, A. (1977). Variations in the vibrational structures of fluorescence spectra of naphthalene and pyrene in water and in aqueous surfactant solutions. Bull. Chem. Soc. Jpn. 50: 2473–2474.

      87 87 Acharya, D.P., Kunieda, H., Shiba, Y., and Aratani, K. (2004). Phase and rheological behavior of novel gemini‐type surfactant systems. J. Phys. Chem. B 108: 1790–1797.

      88 88 Jover, A., Meijide, F., Rodríguez Núñez, E. et al. (1996). Unusual pyrene excimer formation during sodium deoxycholate gelation. Langmuir 12: 1789–1793.

      89 89 Hashimoto, S. and Thomas, J.K. (1984). Photophysical studies of pyrene in micellar sodium taurocholate at high salt concentrations. J. Colloid Interface Sci. 102: 152–163.

      90 90 Andersson, B. and Olofsson, G. (1988). Calorimetric study of nonionic surfactants: enthalpies and heat‐capacity changes for micelle formation in water of C8E4 and Triton X‐100 and micelle size of C8E4. J. Chem. Soc. Faraday Trans. 1 (84): 4087–4095.

      91 91 Chung, H.S. and Heilweil, I.J. (1970). Statistical treatment of micellar solutions. J. Phys. Chem. 74: 488–494.

      92 92 Paula, S., Sues, W., Tuchtenhagen, J., and Blume, A. (1995). Thermodynamics of micelle formation as a function of temperature: A high sensitivity titration calorimetry study. J. Phys. Chem. 99: 11742–11751.

      93 93 Aguiar, J., Carpena, P., Molina‐Bolivar, J.A., and Carnero Ruiz, C. (2003). On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 258: 116–122.

      94 94 Rusanov, A.I. (1993). The mass action law theory of micellar solutions. Adv. Colloid Interface Sci. 45: 1–78.

      95 95 Phillips, J.N. (1955). Energetics of micelle formation. Trans. Faraday Soc. 51: 561–569.

      96 96 Olesen, N.E., Holm, R., and Westh, P. (2015). Determination of the aggregation number for micelles by isothermal titration calorimetry. Thermochim. Acta 588: 28–37.

      97 97 Olofsson, G. and Loh, W. (2009). The use of titration calorimetry to study the association of surfactants in aqueous solutions. J. Braz. Chem. Soc. 20: 577–593.

      98 98 Hall, D.G. (1972). Exact phenomenological interpretation of the micelle point in multicomponent systems. J. Chem. Soc. Faraday Trans. 2 (68): 668–679.

      99 99 Goodeve, C.F. (1935). General discussion on “equilibrium between micelles and simple ions, with particular reference to the solubility of long‐chain salts. Discussion on equilibrium between micelles and simple ions, with particular reference to the solubility of long‐chain salts”. Trans. Faraday Soc. 31: 197–198.

      100 100 Vázquez‐Tato, M.P., Meijide, F., Seijas, J.A. et al. (2018). Analysis of an old controversy: The compensation temperature for micellization of surfactants. Adv. Colloid Interface Sci. 254: 94–98.

      101 101 Gill, S.J., Nichols, N.F., and Wadsö, I. (1976). Calorimetric determination of enthalpies of solution of slightly soluble liquids. II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J. Chem. Thermodyn. 8: 445–452.

      102 102 Gill, S.J., Dec, S.F., Olofsson, G., and Wadsö, I. (1985). Anomalous heat capacity of hydrophobic solvation. J. Phys. Chem. 89: 3758–3761.

      103 103 Crutzen, J.L., Hasse, R., and Sieg, L. (1950). Vapor equilibrium and heat of mixing in the systems cyclohexane‐heptane and methylcyclohexane‐heptane. Z. Naturforsch., B: J. Chem. Sci. 5a: 600–604.

      104 104 Jolicoeur, C. and Philip, P.R. (1974). Enthalpy–entropy compensation for micellization and other hydrophobic interactions in aqueous solutions. Can. J. Chem. 52: 1834–1839.

      105 105 Pan, A., Kar, T., Rakshit, A.K., and Moulik, S.P. (2016). Enthalpy–entropy compensation (EEC) effect: decisive role of free energy. J. Phys. Chem. B 120: 10531–10539.

      106 106 Sugihara, G., Nakano, T.‐Y., Sulthana, S.B., and Rakshit, A.K. (2001). Enthalpy–entropy compensation rule and the compensation temperature observed in micelle formation of different surfactants in water. What is the so‐called compensation temperature? J. Oleo Sci. 50: 29–39.

      107 107 Debye, P. (1947). Molecular weight determination by light scattering. J. Phys. Chem. 51: 18–32.

      108 108 Debye, P. (1949). Light scattering in soap solutions. J. Phys. Colloid Chem. 53: 1–8.

      109 109 Tartar, H.V. and Lelong, A.L.M. (1955). Micellar molecular weights of some paraffin‐chain salts by light scattering. J. Phys. Chem. 59: 1185–1190.

      110 110 Turro, N.J. and Yekta, A. (1978). Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 100: 5951–5952.

      111 111 Biltz, H. (1899). Practical Methods for Determining Molecular Weights. Easton: The Chemical Publishing Company.

      112 112 Krafft, F. (1896). A theory of colloidal solutions. Ber. Dtsch. Chem. Ges. 29: 1334–1344.

      113 113 Kahlenberg, L. and Schreiner, O. (1898). The aqueous solutions of the soaps. Z. Phys. Chem. 27: 552–566.

      114 114 Botazzi, F. and d'Errico, G. (1906). Physico‐chemical investigations of glycogen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 115: 359–386.

      115 115 McBain, J.W., Laing, M.E., and Titley, A.F. (1919). Colloidal electrolytes. Soap solutions as a type. J. Chem. Soc., Trans. 115: 1279–1300.

      116 116 McBain, J.W. and Betz, M.D. (1935). The predominant role of association in the dissociation of simple straight‐chain sulfonic acids in water. II. Freezing point. J. Am. Chem. Soc. 57: 1909–1912.

      117 117 Johnston, S.A. and McBain, J.W. (1942). Freezing‐points of solutions of typical colloidal electrolytes; soaps, sulphonates, sulphates and bile salt. Proc. R. Soc. London, Ser. A 181 (985): 119–133.

      118 118 Gonick, E. and McBain, J.W. (1947). Cryoscopic evidence for micellar association in aqueous solutions of nonionic detergents. J. Am. Chem. Soc. 69: 334–336.

      119 119 Herrington, T.M. and Sahi, S.S. (1986). Temperature dependence of the micellar aggregation number of aqueous solutions of sucrose monolaurate and sucrose monooleate. Colloids Surf. 17: 103–113.

      120 120 Burchfield, T.E. and Woolley, E.M. (1984). Model for thermodynamics of ionic surfactant solutions. 1. Osmotic and activity coefficients. J. Phys. Chem. 88: 2149–2155.

      121 121 Coello, A., Meijide, F., Rodríguez Núñez, E., and Vázquez Tato, J. (1993). Aggregation behavior of sodium cholate in aqueous solution. J. Phys. Chem. 97: 10186–10191.

      122 122 Coello, A., Meijide, F., Rodríguez Núñez, E., and Vázquez Tato, J. (1996). Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci. 85: 9–15.

      123 123 Nagarajan, R. (1994). On interpreting fluorescence measurements: what does thermodynamics have to say about change in Micellar aggregation number versus change in size distribution induced by increasing concentration of the surfactant in solution?