Группа авторов

Biosurfactants for a Sustainable Future


Скачать книгу

bilayers. J. Chem. Soc. Faraday Trans. 2 (72): 1525–1568.

      125 125 Israelachvili, J. (2011). Intermolecular and Surface Forces, 3e. Santa Barbara, CA: Academic Press.

      126 126 Rusanov, A.I. (2014). The mass‐action‐law theory of micellization revisited. Langmuir 30: 14443–14451.

      127 127 Hoffmann, H. (2012). Structure formation in surfactant solutions. A personal view of 35 years of research in surfactant science. Adv. Colloid Interface Sci. 178: 21–33.

      128 128 Hall, D.G. and Wyn‐Jones, E. (1986). Chemical relaxation spectrometry in aqueous surfactant solutions. J. Mol. Liq. 32: 63–82.

      129 129 Finholt, J.E. (1968). The temperature‐jump method for the study of fast reactions. J. Chem. Educ. 45: 394.

      130 130 Kresheck, G.C., Hamori, E., Davenport, G., and Scheraga, H.A. (1966). Determination of the dissociation rate of dodecylpyridinium iodide micelles by a temperature‐jump technique. J. Am. Chem. Soc. 88: 246–253.

      131 131 Folger, R., Hoffmann, H., and Ulbricht, W. (1974). Mechanism of the formation of micelles in sodium dodecyl sulfate (SDS) solutions. Ber. Bunsenges. 78: 986–997.

      132 132 Inoue, T., Tashlro, R., Shlbuya, Y., and Shimozawa, R. (1978). Chemical relaxation studies in micellar solutions of dodecylpyridinium halides. J. Phys. Chem. 82: 2037.

      133 133 Lang, J., Tondre, C., Zana, R. et al. (1975). Chemical relaxation studies of micellar equilibria. J. Phys. Chem. 79: 276–283.

      134 134 Platz, G. (1979). The kinetics of micelle formation. NATO Adv. Study Inst. Ser., Ser. C C50: 239–248.

      135 135 Aniansson, E.A.G. and Wall, S.N. (1974). Kinetics of step‐wise micelle association. J. Phys. Chem. 78: 1024–1030.

      136 136 Kaatze, U. (2011). Kinetics of micelle formation and concentration fluctuations in solutions of short‐chain surfactants. J. Phys. Chem. B 115: 10470–10477.

      137 137 Teubner, M. (1979). Theory of ultrasonic absorption in micellar solutions. J. Phys. Chem. 83: 2917–2920.

      138 138 Telgmann, T. and Kaatze, U. (1997). On the kinetics of the formation of small micelles. 1. Broadband ultrasonic absorption spectrometry. J. Phys. Chem. B 101: 7758–7765.

      139 139 Telgmann, T. and Kaatze, U. (1997). On the kinetics of the formation of small micelles. 2. Extension of the model of stepwise association. J. Phys. Chem. B 101: 7766–7772.

      140 140 Haller, J. and Kaatze, U. (2009). Ultrasonic spectrometry of aqueous solutions of alkyl maltosides: kinetics of micelle formation and head‐group isomerization. ChemPhysChem 10: 2703–2710.

      141 141 Reiss‐Husson, F. and Luzzati, V. (1964). The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small‐angle X‐ray scattering techniques. J. Phys. Chem. 68: 3504–3511.

      142 142 Hayashi, S. and Ikeda, S. (1980). Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions. J. Phys. Chem. 84: 744–751.

      143 143 Coello, A., Meijide, F., Mougan, M.A. et al. (1995). Spherical and rod SDS micelles. J. Chem. Educ. 72: 73–75.

      144 144 Tanford, C. (1972). Micelle shape and size. J. Phys. Chem. 76: 3020–3024.

      145 145 Aniansson, E.A.G., Wall, S.N., Almgren, M. et al. (1976). Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem. 80: 905–922.

      146 146 Jung, H.T., Coldren, B., Zasadzinski, J.A. et al. (2001). The origins of stability of spontaneous vesicles. Proc. Natl. Acad. Sci. U. S. A. 98: 1353–1357.

      147 147 Coldren, B., Van Zanten, R., Mackel, M.J. et al. (2003). From vesicle size distributions to bilayer elasticity via cryo‐transmission and freeze‐fracture electron microscopy. Langmuir 19: 5632–5639.

      148 148 Terech, P. and Talmon, Y. (2002). Aqueous suspensions of steroid nanotubules: structural and rheological characterizations. Langmuir 18: 7240–7244.

      149 149 Meijide, F., Trillo, J.V., de Frutos, S. et al. (2012). Formation of tubules by p‐tert‐butylphenylamide derivatives of chenodeoxycholic and ursodeoxycholic acids in aqueous solution. Steroids 77: 1205–1211.

      150 150 Soto, V.H., Jover, A., Meijide, F. et al. (2007). Supramolecular structures generated by a p‐tert‐butylphenyl‐amide derivative of cholic acid. From vesicles to molecular tubes. Adv. Mater. 19: 1752–1756.

      151 151 Menger, F.M. and Littau, C.A. (1991). Gemini‐surfactants: Synthesis and properties. J. Am. Chem. Soc. 113: 1451–1452.

      152 152 Menger, F.M. and Littau, C.A. (1993). Gemini surfactants: A new class of self‐assembling molecules. J. Am. Chem. Soc. 115: 10083–10090.

      153 153 Peresypkin, A.V. and Menger, F.M. (1999). Zwitterionic Geminis. Coacervate formation from a single organic compound. Org. Lett. 1: 1347–1350.

      154 154 Nitschke, M. and Pastore, G.M. (2002). Biosurfactants: Properties and applications. Quim. Nova 25: 772–776.

      155 155 Otzen, D.E. (2017). Biosurfactants and surfactants interacting with membranes and proteins: Same but different? Biochim. Biophys. Acta 1859: 639–649.

      156 156 Rosenberg, E. and Ron, E.Z. (1999). High‐ and low‐molecular‐mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.

      157 157 Mnif, I. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 71: 100–112.

      158 158 Sałek, K. and Euston, S.R. (2019). Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem. 85: 143–155.

      159 159 Ishigami, Y. and Suzuki, S. (1997). Development of biochemicals‐functionalization of biosurfactants and natural dyes. Prog. Org. Coat. 31: 51–61.

      160 160 Matsuoka, K., Miyajima, R., Ishida, Y. et al. (2016). Aggregate formation of glycyrrhizic acid. Colloids Surf., A 500: 112–117.

      161 161 Garofalakis, G., Murray, B.S., and Sarney, D.B. (2000). Surface activity and critical aggregation concentration of pure sugar esters with different sugar head groups. J. Colloid Interface Sci. 229: 391–398.

      162 162 Goueth, P.Y., Gogalis, P., Bikanga, R. et al. (1994). Synthesis of monoesters as surfactants and drugs from D‐glucose. J. Carbohydr. Chem. 13: 249–272.

      163 163 Sarney, D.B. and Vulfson, E.N. (1995). Application of enzymes to the synthesis of surfactants. Trends Biotechnol. 13: 164–172.

      164 164 Saini, H.S., Barragan‐Huerta, B.E., Lebron‐Paler, A. et al. (2008). Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9‐3 and its physicochemical and biological properties. J. Nat. Prod. 71: 1011–1015.

      165 165 Laycock, M.V., Hildebrand, P.D., Thibault, P. et al. (1991). Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem. 39: 483–489.

      166 166 Neu, T.R., Haertner, T., and Poralla, K. (1990). Surface active properties of viscosin: A peptidolipid antibiotic. Appl. Microbiol. Biotechnol. 32: 518–520.

      167 167 Banipal, P.K., Banipal, T.S., Lark, B.S., and Ahluwalia, J.C. (1997). Partial molar heat capacities and volumes of some mono‐, di‐ and tri‐saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans. 93: 81–87.

      168 168 Varga, I., Mészáros, R., Stubenrauch, C., and Gilányi, T. (2012). Adsorption of sugar surfactants at the air/water interface. J. Colloid Interface Sci. 379: 78–83.

      169 169 Ribeiro, I.A.C., Faustino, C.M.C., Guerreiro, P.S. et al. (2015). Development of novel sophorolipids with improved cytotoxic activity toward MDA‐MB‐231 breast cancer cells. J. Mol. Recognit. 28: 155–165.

      170 170 Angarten, R.G. and Loh, W. (2014). Thermodynamics of micellization of homologous series of alkyl mono and di‐glucosides in water and in heavy water. J. Chem. Thermodyn. 73: 218–223.

      171 171