Группа авторов

Biosurfactants for a Sustainable Future


Скачать книгу

Cameotra, S.S. (2013). Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 97 (3): 1005–1016.

      57 57 Sriram, M.I., Kalishwaralal, K., Deepak, V. et al. (2011). Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf. B Biointerfaces 85 (2): 174–181.

      58 58 Dubey, P., Kumar, S., Aswal, V.K. et al. (2016). Silk fibroin‐sophorolipid gelation: Deciphering the underlying mechanism. Biomacromolecules 17: 3318–3327.

      59 59 Yilmaz, F., Ergene, A., Yalcin, E., and Tan, S. (2009). Production and characterization of biosurfactants produced by microorganisms isolated from milk factory wastewaters. Environ. Technol. 30: 1397–1404.

      60 60 Basak, G. and Das, N. (2014). Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn (II) removal from electroplating wastewater. J. Environ. Biol. 35 (6): 1087.

      61 61 Falode, O.A., Adeleke, M.A., and Ogunshe, A.A. (2017). Evaluation of indigenous biosurfactant‐producing bacteria for de‐emulsification of crude oil emulsions. Microbiol. Res. J. Int. 18: 1–9.

      62 62 Zinjarde, S., Chinnathambi, S., Lachke, A.H., and Pant, A. (1997). Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoelectric focusing unit. Lett. Appl. Microbiol. 24 (2): 117–121.

      63 63 Fontes, G.C., Fonseca Amaral, P.F., Nele, M., and Zarur Coelho, M.A. (2010). Factorial design to optimize biosurfactant production by Yarrowia lipolytica. Biomed. Res. Int. 2010: 821306.

      64 64 Stüwer, O., Hommel, R., Haferburg, D., and Kleber, H.P. (1987). Production of crystalline surface‐active glycolipids by a strain of Torulopsis apicola. J. Biotechnol. 6 (4): 259–269.

      65 65 Vacheron, J., Desbrosses, G., Bouffaud, M.L. et al. (2013). Plant growth‐promoting rhizobacteria and root system functioning. Front. Plant Sci. 4: 356.

      66 66 Sarubbo, L.A., do Carmo Marçal, M., Neves, M.L.C. et al. (2001). Bioemulsifier production in batch culture using glucose as carbon source by Candida lipolytica. Appl. Biochem. Biotechnol. 95 (1): 59–67.

      67 67 Bernard, A. and Payton, M. (1995). Fermentation and growth of Escherichia coli for optimal protein production. Curr. Protoc. Protein Sci. 1: 5–3.

      68 68 Blank, L.L., Grosso, L.J., and Benson, J.J. (1984). A survey of clinical skills evaluation practices in internal medicine residency programs. J. Med. Educ. 59 (5): 401–406.

      69 69 Brück, H., Coutte, F., Delvigne, F., Dhulster, P. and Jacques, P., (2020). Optimization of biosurfactant production in a trickle‐bed biofilm reactor with genetically improved bacteria. Poster presented at the 25th National Symposium for Applied Biological Science. Available at: http://hdl.handle.net/2268/247270.

      70 70 Atlić, A., Koller, M., Scherzer, D. et al. (2011). Continuous production of poly ([R]‐3‐hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl. Microbiol. Biotechnol. 91 (2): 295–304.

      71 71 Brumano, L.P., Antunes, F.A.F., Souto, S.G. et al. (2017). Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: new approach to understand the influence of important variables in the process. Bioresour. Technol. 243: 264–272.

      72 72 Amutha, R. and Gunasekaran, P. (2001). Production of ethanol from liquefied cassava starch using co‐immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J. Biosci. Bioeng. 92 (6): 560–564.

      73 73 Rebroš, M., Rosenberg, M., Grosová, Z. et al. (2009). Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl. Biochem. Biotechnol. 158 (3): 561–570.

      74 74 Saikia, R.R., Deka, S., Deka, M., and Sarma, H. (2012). Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J. Basic Microbiol. 52 (4): 446–457.

      75 75 Santos, D.K., Rufino, R.D., Luna, J.M. et al. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17 (3): 401. https://doi.org/10.3390/ijms17030401.

      76 76 Noah, K.S., Bruhn, D.F., and Bala, G.A. (2005). Surfactin production from potato process effluent by Bacillus subtilis in a chemostat. Appl. Biochem. Biotechnol. 121–124: 465–473.

      77 77 Kiran, G.S., Sabu, A., and Selvin, J. (2010). Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J. Biotechnol. 148 (4): 221–225.

      78 78 Samad, A., Zhang, J., Chen, D., and Liang, Y. (2015). Sophorolipid production from biomass hydrolysates. Appl. Biochem. Biotechnol. 175: 2246–2257.

      79 79 Adamberg, K., Kask, S., Laht, T.M., and Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH‐auxostat study. Int. J. Food Microbiol. 85 (1–2): 171–183.

      80 80 Klok, A.J., Verbaanderd, J.A., Lamers, P.P. et al. (2013). A model for customising biomass composition in continuous microalgae production. Bioresour. Technol. 146: 89–100.

      81 81 Kebbouche‐Gana, S., Gana, M.L., Ferrioune, I. et al. (2013). Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17: 981–993.

      82 82 Vanavil, B., Perumalsamy, M., and Rao, A.S. (2013). Biosurfactant production from novel air isolate NITT6L: screening, characterization and optimization of media. J. Microbiol. Biotechnol. 23: 1229–1243.

      83 83 Behrens, B., Helmer, P.O., Tiso, T. et al. (2016). Rhamnolipid biosurfactant analysis using online turbulent flow chromatography‐liquid chromatography‐tandem mass spectrometry. J. Chromatogr. A 1465: 90–97.

      84 84 Zhang, Q., Li, Y., and Xia, L. (2014). An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin‐shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnol. Biofuels 7 (1): 152.

      85 85 Probert, H.M. and Gibson, G.R. (2002). Investigating the prebiotic and gas‐generating effects of selected carbohydrates on the human colonic microflora. Lett. Appl. Microbiol. 35 (6): 473–480.

      86 86 Rodriguez‐Contreras, A., Koller, M., de Sousa Dias, M.M. et al. (2013). Novel poly [(R)‐3‐hydroxybutyrate]‐producing bacterium isolated from a Bolivian hypersaline lake. Food Technol. Biotechnol. 51 (1): 123–130.

      87 87 Sarilmiser, H.K., Ates, O., Ozdemir, G. et al. (2015). Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 119 (4): 455–463.

      88 88 Xu, N., Liu, S., Xu, L. et al. (2020). Enhanced rhamnolipids production using a novel bioreactor system based on integrated foam‐control and repeated fed‐batch fermentation strategy. Biotechnol. Biofuels 13: 1–10.

      89 89 Yao, S., Zhao, S., Lu, Z. et al. (2015). Control of agitation and aeration rates in the production of surfactin in foam overflowing fed‐batch culture with industrial fermentation. Rev. Argent. Microbiol. 47: 344–349.

      90 90 Zhu, Y., Gan, J.J., Zhang, G.L. et al. (2007). Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju. u1M. J. Zhejiang Univ. Sci. A 8 (9): 1514–1520.

      91 91 Aguilera‐Segura, S.M., Vélez, V.N., Achenie, L. et al. (2016). Peptides design based on transmembrane Escherichia coli's OmpA protein through molecular dynamics simulations in water–dodecane interfaces. J. Mol. Graph. Model. 68: 216–223.

      92 92 Bhardwaj, G., Cameotra, S.S., and Chopra, H.K. (2013). Utilization of oleo‐chemical industry by‐products for biosurfactant production. AMB Express 3 (1): 68.

      93 93 Banat, I.M., Satpute, S.K., Cameotra, S.S. et al. (2014). Cost effective technologies and renewable substrates for biosurfactants' production. Front. Microbiol. 5: 697.

      94 94 Thavasi, R., Jayalakshmi, S., Balasubramanian, T., and Banat, I.M. (2008). Production and characterization