Группа авторов

Biosurfactants for a Sustainable Future


Скачать книгу

Mercade, M.E., Manresa, M.A., Robert, M. et al. (1993). Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour. Technol. 43 (1): 1–6.

      96 96 Abalos, A., Pinazo, A., Infante, M.R. et al. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17 (5): 1367–1371.

      97 97 Benincasa, M., Abalos, A., Oliveira, I., and Manresa, A. (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85: 1–8.

      98 98 De Faria, A.F., Teodoro‐Martinez, D.S., De Oliveira Barbosa, G.N. et al. (2011). Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM‐05 grown on raw glycerol from the biodiesel industry. Process Biochem. 46: 1951–1957.

      99 99 George, S. and Jayachandran, K. (2013). Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J. Appl. Microbiol. 114: 373–383.

      100 100 Moya Ramírez, I., Altmajer Vaz, D., Banat, I.M. et al. (2016). Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour. Technol. 205: 1–6.

      101 101 Bednarski, W., Adamczak, M., Tomasik, J., and Płaszczyk, M. (2004). Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresour. Technol. 95 (1): 15–18.

      102 102 Nitschke, M., Costa, S.G., and Contiero, J. (2005). Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 21: 1593–1600.

      103 103 Rufino, R.D., Sarubbo, L.A., Neto, B.B., and Campos‐Takaki, G.M. (2008). Experimental design for the production of tensio‐active agent by Candida lipolytica. J. Ind. Microbiol. Biotechnol. 35: 907–914.

      104 104 Jang, J.Y., Yang, S.Y., Kim, Y.C. et al. (2013). Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J. Agric. Food Chem. 61: 6786–6791.

      105 105 Menon, V., Prakash, G., Prabhune, A., and Rao, M. (2010). Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresour. Technol. 101: 5366–5373.

      106 106 Di Martino, C., Catone, M.V., Lopez, N.I., and Raiger Iustman, L.J. (2014). Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in Pseudomonas sp. KA‐08. Curr. Microbiol. 68: 735–742.

      107 107 Marmesat, S., Rodrigues, E., Velasco, J., and Dobarganes, C. (2007). Quality of used frying fats and oils: comparison of rapid tests based on chemical and physical oil properties. Int. J. Food Sci. Technol. 42 (5): 601–608.

      108 108 Haba, E., Espuny, M.J., Busquets, M., and Manresa, A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol. 88: 379–387.

      109 109 Vedaraman, N. and Venkatesh, N. (2011). Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Braz. J. Chem. Eng. 28 (2): 175–180.

      110 110 Pan, L.S., Xu, N., Tian, Z. et al. (2011). Preparation and characterization of poly(propylene carbonate)/alkali lignin composite sheets by calendering process. In: Advanced Materials Research, vol. 233–235, 1786–1789. Trans Tech Publications Ltd.

      111 111 Hasanizadeh, P., Moghimi, H., and Hamedi, J. (2018). Biosurfactant production by Mucor circinelloides: Environmental applications and surface‐active properties. Eng. Life Sci. 18 (5): 317–325.

      112 112 Banasik, A., Kanellopoulos, A., Claassen, G.D.H. et al. (2017). Closing loops in agricultural supply chains using multi‐objective optimization: A case study of an industrial mushroom supply chain. Int. J. Prod. Econ. 183: 409–420.

      113 113 Garg, V.K., Suthar, S., and Yadav, A. (2012). Management of food industry waste employing vermicomposting technology. Bioresour. Technol. 126: 437–443.

      114 114 Ponte Rocha, M.V., Gomes Barreto, R.V., Melo, V.M., and Barros Goncalves, L.R. (2009). Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008. Appl. Biochem. Biotechnol. 155: 366–378.

      115 115 Rocha, M.V., Souza, M.C., Benedicto, S.C. et al. (2007). Production of biosurfactant by Pseudomonas aeruginosa grown on cashew apple juice. Appl. Biochem. Biotechnol. 137–140: 185–194.

      116 116 Giro, M.E., Martins, J.J., Rocha, M.V. et al. (2009). Clarified cashew apple juice as alternative raw material for biosurfactant production by Bacillus subtilis in a batch bioreactor. Biotechnol. J. 4: 738–747.

      117 117 Liu, X., Ren, B., Chen, M. et al. (2010). Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl. Microbiol. Biotechnol. 87: 1881–1893.

      118 118 Verma, S., Prasanna, R., Saxena, J. et al. (2012). Deciphering the metabolic capabilities of a lipase producing Pseudomonas aeruginosa SL‐72 strain. Folia Microbiol. (Praha) 57: 525–531.

      119 119 FAO (2008). International Year of the Potato 2008 New Light on a Hidden Treasure. FAO.

      120 120 Thompson, D.N., Fox, S.L. and Bala, G.A., (2000). Biosurfactants from potato process effluents. In: M. Finkelstein and B.H. Davison (eds), Twenty‐First Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, pp. 917–930. Humana Press, Totowa, NJ.

      121 121 Das, K. and Mukherjee, A.K. (2007). Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: Some industrial applications of biosurfactants. Process Biochem. 42 (8): 1191–1199.

      122 122 Wang, Q., Chen, S., Zhang, J. et al. (2008). Co‐producing lipopeptides and poly‐γ‐glutamic acid by solid‐state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresour. Technol. 99 (8): 3318–3323.

      123 123 Araújo, H.W., Andrade, R.F., Montero‐Rodríguez, D. et al. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb. Cell Fact. 18 (1): 1–13.

      124 124 Barros, F.F.C., Ponezi, A.N., and Pastore, G.M. (2008). Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J. Ind. Microbiol. Biotechnol. 35 (9): 1071–1078.

      125 125 Nitschke, M. and Pastore, G. (2003). Cassava flour wastewater as a substrate for biosurfactant production. Appl. Biochem. Biotechnol. 105–108: 295–301.

      126 126 Nitschke, M. and Pastore, G.M. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 97: 336–341.

      127 127 Makkar, R.S., Cameotra, S.S., and Banat, I.M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1 (1): 5.

      128 128 Nitschke, M., Ferraz, C., and Pastore, G.M. (2004). Selection of microorganisms for biosurfactant production using agroindustrial wastes. Braz. J. Microbiol. 35: 81–85.

      129 129 Marcelino, P.R.F., Gonçalves, F., Jimenez, I.M. et al. (2020). Sustainable production of biosurfactants and their applications. In: A.P. Ingle, A.K. Chandel, and S.S. Silva (eds),. Lignocellulosic Biorefining Technologies: 159–183. Available at: https://doi.org/10.1002/9781119568858.ch8.

      130 130 Rinaldi, R., Jastrzebski, R., Clough, M.T. et al. (2016). Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55 (29): 8164–8215.

      131 131 Portilla‐Rivera, O., Torrado, A., Domínguez, J.M., and Moldes, A.B. (2008). Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J. Agric. Food Chem. 56 (17): 8074–8080.

      132 132 Cortés‐Camargo, S., Pérez‐Rodríguez, N.,