В. Б. Живетин

Системы аэромеханического контроля критических состояний


Скачать книгу

≠ 0, связано с изменением местного угла атаки α(z,β), когда .

      При этом критический угол атаки, измеренный флюгариком, не зависит от β так же, как и ранее от ωх. Влияние числа Маха на величину Cу кр = Cу св, где Cу св – подъемная сила сваливания, представлена в виде графика на рис. 1.20.

      Рис. 1.19

      Рис. 1.20

      Области допустимых и критических состояний ПСАД, построенных из условий сваливания для различных скоростей полета при выполнении маневров на заданной высоте без вращения и скольжения, изображены на рис. 1.21.

      На рис. 1.21 введены обозначения: Vсв – скорость сваливания;  – критическое значение перегрузки nу; Vпр – приборная скорость полета; Ωдоп, Ωкр – допустимые и критические значения (Vпр, nу) соответственно.

      Рис. 1.21

      Ситуация существенно изменяется, когда рассматривается ПСАД и его свойства в горизонтальном полете с вращением. При этом область опасных состояний проявляется во взаимодействии продольного и бокового движений, когда создается опасность потери устойчивости, которая зависит (в основном) от следующих факторов:  – коэффициента продольной статической устойчивости; mβy – коэффициента путевой статической устойчивости; величины угловой скорости ωх; – площадь крыла (рис. 1.22). При этом область Ωдоп образована огибающими семейства гипербол, являющихся границами областей устойчивости, полученными при различных значениях угловых скоростей вращения самолета.

      Расширение коридора обусловлено демпфированием рыскания и тангажа. Всем значениям и mβy внутри области Ωдоп будут соответствовать режимы полета, устойчивые относительно крена при соответствующих ωх.

      Рис. 1.22

      Перекрестные связи между продольным и боковыми моментами сказываются, например, следующим образом: при изменении угла атаки α не только изменяется момент тангажа Мz, но и самопроизвольно изменяются моменты рыскания и крена (боковые моменты) и наоборот. Подобные взаимосвязанные изменения характеристик продольного и бокового движений самолета определяются действующими на него аэродинамическими, инерционными и гироскопическими моментами и силами.

      Сложность контроля и ограничения параметров фазовой траектории [22] критических значений угловых скорости и ускорения ωmax, εmax, а также ωmax, εmax обусловлено их многозначностью от начальных условий. Так, например, по перегрузке критические значения ωх изменяются от 0,8 рад/сек до 2,0 рад/сек при изменении nу от 1,0 до 2,5 для самолета МиГ-19.

      Все сказанное выше позволяет сформулировать

      Утверждение. Обеспечение безопасности полета маневренных самолетов целесообразно реализовывать с помощью систем контроля поля сил аэродинамического давления.

      1.5. Вектор аэродинамических сил в структуре безопасного полета

      В настоящее время одним из альтернативных путей в разработке