Группа авторов

Human Milk: Composition, Clinical Benefits and Future Opportunities


Скачать книгу

shift between movements in each of these three areas. Ultrasound recordings from 29 mother/baby pairs (46 complete breastfeeds) were analyzed, although analysis was restricted to those periods when active sucking was taking place. Nonetheless, over 1 million frames of active sucking were analyzed in real-time by this technique.

      If movement occurred in sector 1 first, a negative phase shift was recorded relative to sector 2; a zero phase shift indicated an absence of a phase shift between sectors 1 and 2; while a positive phase shift indicated movement in sector 2 preceded that in sector 1. In practice, this was caused by the movement in sector 2 being of larger amplitude than that in sector 1 and was commonly evidence for the presence of an ETD being inserted (i.e., an “added” suction element being superimposed on a peristaltic wave).

Img Img

      PTMs were present throughout active sucking (100%), being: highly conspicuous for 78% of feeding, and predominating for over half of the time spent feeding, to the exclusion of ETDs (“suction/vacuum”). For a substantial period of feeding (27.5%), both PTMs and ETDS were equally visible, with no one method predominating over the other. For 22% of feeding, the added suction elements (ETDs) appeared to predominate. This analysis shows that ETDs [7, 12] were observable for roughly half of the time spent feeding.

Img

      The two pictures show the contour of the dorsum of the tongue, which is automatically tracked (using the purpose-built software); the tongue outline is compressed left to right in this figure. The dotted line shows the tongue’s outline in the current frame, while the continuous line shows that in the previous frame. The circle circumscribes the mid-section of the baby’s tongue where the ETD is generated.

      The upper picture shows the precise moment the ETD starts to be generated, as the continuous line shows an absence of any indentation, while the dotted line peels away markedly to create an indentation (marked with an X), representing the start of the formation of an ETD “pocket.” In the lower picture, just four frames later, the ETD “pocket” is clear in the continuous line, and it is just starting to be closed off again, from the front (marked with a Y). This is the clearest evidence to date that added suction elements (ETDs) are created by the same core peristaltic process.

Img Img

      No data were collected on positive stripping pressure, so axiomatically, any such element was excluded from the model, despite it being an explicit component of one of the key studies they cited [19]. Any theoretical model which only assumes that the baby behaves like a mechanical suction pump is likely either to verify that presumption [20], or find that it is inadequate to explain clinical data on milk transfer [21].

      Their theoretical model simulated milk transfer by one baby, which was then compared with clinical data on intake by that baby. Based on this, the authors were forced to conclude that either sucking pressure alone, or total feed duration, did not account for: (a) the volume of milk removed, (b) the flow rate per unit time, or (c) the flow rate per suck.