References
1Ceri H, et al: The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999;37:1771–1776.
2Goeres DM, et al: Statistical assessment of a laboratory method for growing biofilms. Microbiology 2005;151:757–762.
3Hall Snyder AD, et al: Evaluation of high-dose daptomycin versus vancomycin alone or combined with clarithromycin or rifampin against Staphylococcus aureusand S. epidermidis in a novel in vitro PK/PD model of bacterial biofilm. Infect Dis Ther 2015;4:51–65.
4Basas J, et al: High-dose daptomycin is effective as an antibiotic lock therapy in a rabbit model of Staphylococcus epidermidis catheter-related infection. Antimicrob Agents Chemother 2018;62:e01777-17.
5Li Y, et al: Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2014;58:7586–7591.
6Chan CL, et al: Alloicoccus otidis forms multispecies biofilm with Haemophilus influenzae: effects on antibiotic susceptibility and growth in adverse conditions. Front Cell Infect Microbiol 2017;7:344.
7Eick S, Seltmann T, Pfister W: Efficacy of antibiotics to strains of periodontopathogenic bacteria within a single species biofilm – an in vitro study. J Clin Periodontol 2004;31:376–383.
8Lobo MM, et al: In vitro evaluation of caries inhibition promoted by self-etching adhesive systems containing antibacterial agents. J Biomed Mater Res B Appl Biomater 2005;75:122–127.
9Soukos NS, et al: Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med 2003;33:161–168.
10Berg CH, et al: Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur J Oral Sci 2001;109:316–324.
11Thurnheer T, et al: Static biofilm removal around ultrasonic tips in vitro. Clin Oral Investig 2014;18:1779–1784.
12Lynch RJ, ten Cate JM: Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model. Caries Res 2006;40:142–147.
13Pirracchio L, et al: Activity of taurolidine gels on ex vivo periodontal biofilm. Clin Oral Investig 2018;22:2031–2037.
14Agnello M, et al: Arginine improves pH homeostasis via metabolism and microbiome modulation. J Dent Res 2017;22034517707512.
15Pratten J, et al: In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. J Appl Microbiol 1998;84:1149–1155.
16Sedlacek MJ, Walker C: Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 2007;22:333–339.
17Sennhenn-Kirchner S, et al: Decontamination efficacy of antiseptic agents on in vivo grown biofilms on rough titanium surfaces. Quintessence Int 2009;40:e80–e88.
18Ingendoh-Tsakmakidis A, et al: Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol 2019;21:e13078.
19Eick S, et al: Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int 2011;42:687–700.
20Jurczyk K, et al: In-vitro activity of sodium-hypochlorite gel on bacteria associated with periodontitis. Clin Oral Investig 2016;20:2165–2173.
21Hagi TT, et al: A biofilm pocket model to evaluate different non-surgical periodontal treatment modalities in terms of biofilm removal and reformation, surface alterations and attachment of periodontal ligament fibroblasts. PLoS One 2015;10:e0131056.
22Hope CK, Wilson M: Effects of dynamic fluid activity from an electric toothbrush on in vitro oral biofilms. J Clin Periodontol 2003;30:624–629.
23Pan PC, et al: In-vitro evidence for efficacy of antimicrobial mouthrinses. J Dent 2010;38 (Suppl 1):S16–S20.
24Guggenheim B, Meier A: In vitro effect of chlorhexidine mouth rinses on polyspecies biofilms. Schweiz Monatsschr Zahnmed 2011;121:432–441.
25Sherry L, et al: Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health 2013;13:47.
26Bottino MC, et al: Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig 2014;18:2151–2158.
27Tepper B, et al: In vitro method for prediction of plaque reduction by dentifrice. J Microbiol Methods 2015;118:85–92.
28Jasberg H, et al: Bifidobacteria inhibit the growth of Porphyromonas gingivalis but not of Streptococcus mutans in an in vitro biofilm model. Eur J Oral Sci 2016;124:251–258.
29Pratten J, et al: Physical disruption of oral biofilms by sodium bicarbonate: an in vitro study. Int J Dent Hyg 2016;14:209–214.
30Carter K, Landini G, Walmsley AD: Plaque removal characteristics of electric toothbrushes using an in vitro plaque model. J Clin Periodontol 2001;28:1045–1049.
31Arnold WH, et al: The in vitro effect of fluoridated milk in a bacterial biofilm–enamel model. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006;150:63–69.
32Seemann R, Kluck I, Kage A: An in vitro microbial-based model for studying caries-preventive agents. Acta Odontol Scand 2006;64:27–30.
33Steinberg D, Tal T, Friedman M: Sustained-release delivery systems of triclosan for treatment of Streptococcus mutans biofilm. J Biomed Mater Res B Appl Biomater 2006;77:282–286.
34Zanin IC, et al: Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci 2006;114:64–69.
35Knight GM, et al: The inability of Streptococcus mutans and Lactobacillus acidophilus to form a biofilm in vitro on dentine pretreated with ozone. Aust Dent J 2008;53:349–353.
36Chen F, et al: Tooth-binding micelles for dental caries prevention. Antimicrob Agents Chemother 2009;53:4898–4902.
37Sullivan