targeted antimicrobial peptide mouth rinse: targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res 2011;45:415–428.
38Zaura E, et al: The effects of fractions from shiitake mushroom on composition and cariogenicity of dental plaque microcosms in an in vitro caries model. J Biomed Biotechnol 2011;2011:135034.
39Falsetta ML, et al: Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. Antimicrob Agents Chemother 2012;56:6201–6211.
40Huang X, Exterkate RA, ten Cate JM: Factors associated with alkali production from arginine in dental biofilms. J Dent Res 2012;91:1130–1134.
41Bueno-Silva B, et al: Effect of neovestitol-vestitol containing Brazilian red propolis on accumulation of biofilm in vitro and development of dental caries in vivo. Biofouling 2013;29:1233–1242.
42Pereira CA, et al: Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med Sci 2013;28:859–864.
43Yamakami K, et al: Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharm Biol 2013;51:267–270.
44Zhao W, et al: The preventive effect of grape seed extract on artificial enamel caries progression in a microbial biofilm-induced caries model. J Dent 2014;42:1010–1018.
45Giacaman RA, Jobet-Vila P, Munoz-Sandoval C: Fatty acid effect on sucrose-induced enamel demineralization and cariogenicity of an experimental biofilm-caries model. Odontology 2015;103:169–176.
46Ionescu AC, et al: Silver-polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. J Dent 2015:43:1483–1490.
47Pan W, et al: A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo. J Appl Microbiol 2015;119:1403–1411.
48Ren Z, et al: Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother 2015;60:126–135.
49Fernandez CE, et al: Effect of fluoride-containing toothpastes on enamel demineralization and Streptococcus mutans biofilm architecture. Caries Res 2016;50:151–158.
50Kulshrestha S, et al: Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 2016;100:1901–1914.
51Yang H, et al: Antibiofilm activities of a novel chimeolysin against Streptococcus mutans under physiological and cariogenic conditions. Antimicrob Agents Chemother 2016;60:7436–7443.
52Nascimento P, et al: Addition of ammonium-based methacrylates to an experimental dental adhesive for bonding metal brackets: carious lesion development and bond strength after cariogenic challenge. Am J Orthod Dentofacial Orthop 2017;151:949–956.
53Krzysciak W, et al: Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients 2017;9:1242.
54Dashper SG, et al: CPP-ACP promotes SnF2 efficacy in a polymicrobial caries model. J Dent Res 2019;98:218–224.
55Heersema LA, Smyth HDC: A multispecies biofilm in vitro screening model of dental caries for high-throughput susceptibility testing. High Throughput 2019;8:14.
56Grundling GL, et al: Effect of ultrasonics on Enterococcus faecalis biofilm in a bovine tooth model. J Endod 2011;37:1128–1133.
57Frater M, et al: In vitro efficacy of different irrigating solutions against polymicrobial human root canal bacterial biofilms. Acta Microbiol Immunol Hung 2013;60:187–199.
58Lin J, Shen Y, Haapasalo M: A comparative study of biofilm removal with hand, rotary nickel-titanium, and self-adjusting file instrumentation using a novel in vitro biofilm model. J Endod 2013;39:658–663.
59Frough Reyhani M, et al: Evaluation of antimicrobial effects of different concentrations of triple antibiotic paste on mature biofilm of Enterococcus faecalis. J Dent Res Dent Clin Dent Prospects 2015;9:138–143.
60Marinic K, et al: Repeated exposures to blue light-activated eosin Y enhance inactivation of E. faecalis biofilms, in vitro. Photodiagnosis Photodyn Ther 2015;12:393–400.
61Sabino CP, et al: Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals. Lasers Med Sci 2015;30:1657–1665.
62Albuquerque MTP, Nagata J, Bottino MC: Antimicrobial efficacy of triple antibiotic-eluting polymer nanofibers against multispecies biofilm. J Endod 2017;43:S51–S56.
63Tamura A, et al: The effects of antibiotics on in vitro biofilm model of periodontal disease. Eur J Med Res 2008;13:439–445.
64Wakabayashi H, et al: Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob Agents Chemother 2009;53:3308–3316.
65Daep CA, et al: Selective substitution of amino acids limits proteolytic cleavage and improves the bioactivity of an anti-biofilm peptide that targets the periodontal pathogen, Porphyromonas gingivalis. Peptides 2010;31:2173–2178.
66Hua J, Scott RW, Diamond G: Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity. Mol Oral Microbiol 2010;25:426–432.
67Nastri L, et al: Effects of toluidine blue-mediated photodynamic therapy on periopathogens and periodontal biofilm: in vitro evaluation. Int J Immunopathol Pharmacol 2010;23:1125–1132.
68Pappen FG, et al: In vitro antibacterial action of Tetraclean, MTAD and five experimental irrigation solutions. Int Endod J 2010;43:528–535.
69Ciric L, et al: In vitro assessment of shiitake mushroom (Lentinula edodes) extract for its antigingivitis activity. J Biomed Biotechnol 2011;2011:507908.
70Maezono H, et al: Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. Antimicrob Agents Chemother 2011;55:5887–5892.
71Suci P, Young M: Selective killing of Aggregatibacter actinomycetemcomitans by ciprofloxacin during development of a dual species biofilm with Streptococcus sanguinis. Arch Oral Biol 2011;56:1055–1063.
72Ledder RG, McBain AJ: An in vitro comparison of dentifrice formulations in three distinct oral microbiotas. Arch Oral Biol 2012;57:139–147.
73Sanchez MC, et al: Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral Patol Oral Cir Bucal 2013;18:e86–e92.
74Belibasakis GN, Thurnheer T: Validation of antibiotic efficacy on in vitro subgingival biofilms. J Periodontol 2014;85:343–348.
75Millhouse E, et al: Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health 2014;14:80.
76Song X, et al: Antimicrobial action of minocycline microspheres versus 810-nm diode laser on human dental plaque microcosm biofilms. J Periodontol 2014;85:335–342.
77Tamanai-Shacoori Z, et al: Silver-zeolite combined to polyphenol-rich extracts of Ascophyllum nodosum: potential active role in prevention of periodontal diseases. PLoS One 2014;9:e105475.
78Wongsariya K, et al: Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol 2014;52:273–280.
79Fontana CR, et al: The effect of blue light on periodontal biofilm growth in vitro. Lasers Med Sci 2015;30:2077–2086.
80Soares GM, et al: Effects of azithromycin, metronidazole, amoxicillin, and metronidazole plus amoxicillin on an in vitro polymicrobial subgingival biofilm model. Antimicrob Agents Chemother 2015;59:2791–2798.
81Zollinger