Группа авторов

Solar-to-Chemical Conversion


Скачать книгу

electrons and holes can also be reduced by the electron–hole recombination, which was achieved by cocatalysts, Z‐scheme, or heterostructures of coupling two semiconductors with properly aligned band structures. (iii) The kinetics of photocatalytic carbon dioxide reduction is also dependent upon light absorption by the photocatalyst. Many optical techniques are potentially useful for harvesting light for improvement of the efficiency including structuring for multiple light scattering to increase the effective optical path length, and upconversion to transform non‐absorbed infrared light to absorbed visible light. (iv) Large surface area and porosity are required to maximize the adsorption, transport, and desorption of reactants, intermediates, and products. (v) As defects such as oxygen vacancies control most of the chemistry at many metal oxide surfaces, oxygen vacancies are believed to act as a very important role on electron trapping and activating CO2. The oxygen vacancies can be created either by doping with other anions or cations or by thermal treatments of stoichiometric photocatalysts, and these defects can be detected with in situ electron paramagnetic resonance spectroscopy, UV photoemission spectroscopy, metastable impact electron spectroscopy, and so on. (vi) A high‐efficiency process is also necessary to be founded on photoactive materials made of earth‐abundant, nontoxic, light‐stable, scalable, and low‐cost materials.

      In addition, the efficiency of photocatalytic reduction of carbon dioxide could be deactivated after irradiation for long time. The deactivating phenomenon in the photocatalytic reduction of carbon dioxide can be attributed to the following three reasons: (i) The adsorption or accumulation of intermediate products on the semiconductor surface could occupy photocatalytic reaction centers and also hinder the adsorption of carbon dioxide or water, which could lead to the deactivation of semiconductors under the continuous irradiation. (ii) The desorption of hydrocarbon production affects the continuous adsorption of reactants that take part in the photocatalytic reaction. (iii) The surface contamination of semiconductors shields the light absorption, resulting in the reduction of the generation of electron–hole pairs. Therefore, it is necessary to pay more attention to the study of semiconductor deactivation in future work.

      This work is supported financially by the National Natural Science Foundation of China (21501138), the Natural Science Foundation of Hubei Province (2019CFB556), and the Science Research Foundation of Wuhan Institute of Technology (K201939).

      1 1 (a) Oppenheimer, M. and Alley, R.B. (2005). Clim. Change 68: 257. (b) Leifeld, J. and Fuhrer, J. (2005). Environ. Sci. Policy 8: 410.

      2 2 (a) Keller, F., Lee, R.P., and Meyer, B. (2020). J. Cleaner Prod. 250: 119484. (b) Kaur‐Sidhu, M., Ravindra, K., Mor, S., and John, S. (2020). Atmos. Pollut. Res. 11: 252.

      3 3 (a) Bachu, S., Bonijoly, D., Bradshaw, J. et al. (2007). Int. J. Greenhouse Gas Control 1: 430. (b) Rubin, E.S., Chen, C., and Rao, A.B. (2007). Energy Policy 35: 4444. (c) Davison, J. (2007). Energy 32: 1163.

      4 4 Herron, J.A., Kim, J., Upadhye, A.A. et al. (2015). Energy Environ. Sci. 8: 126.

      5 5 (a) McConnell, I., Li, G., and Brudvig, G.W. (2010). Chem. Biol. 17: 434. (b) Larkum, A.W. (2010). Curr. Opin. Biotechnol. 21: 271.

      6 6 van Grondelle, R. and Boeker, E. (2017). J. Phys. Chem. B 121: 7229.

      7 7 (a) Dogutan, D.K. and Nocera, D.G. (2019). Acc. Chem. Res. 52: 3143. (b) Bohne, C., Pan, Q., Ceroni, P. et al. (2015). Faraday Discuss. 185: 187. (c) Barber, J. (2009). Chem. Soc. Rev. 38: 185.

      8 8 Dhakshinamoorthy, A., Navalon, S., Corma, A., and Garcia, H. (2012). Energy Environ. Sci. 5: 9217.

      9 9 Liu, X., Inagaki, S., and Gong, J. (2016). Angew. Chem. Int. Ed. 55: 14924.

      10 10 (a) Hamdy, M.S., Amrollahi, R., Sinev, I. et al. (2014). J. Am. Chem. Soc. 136: 594. (b) Zhao, G., Huang, X., Wang, X., and Wang, X. (2017). J. Mater. Chem. A 5: 21625.

      11 11 Ke, J., Liu, J., Sun, H. et al. (2017). Appl. Catal., B 200: 47.

      12 12 Hou, W. and Cronin, S. (2013). Adv. Funct. Mater. 23: 1612.

      13 13 (a) Ke, J., Duan, X., Luo, S.L. et al. (2017). Chem. Eng. J. 313: 1447. (b) Luo, S., Ke, J., Yuan, M. et al. (2018). Appl. Catal., B 221: 215.

      14 14 (a) Watanabe, K., Menzel, D., Nilius, N., and Freund, H. (2006). Chem. Rev. 106: 4301. (b) Banerjee, S., Pillai, S., Falaras, P. et al. (2014). J. Phys. Chem. Lett. 5: 2543. (c) Tahir, M. and Amin, N. (2013). Renewable Sustainable Energy Rev. 25: 560.

      15 15 Ke, J., Adnan Younis, M., Kong, Y. et al. (2018). Nano‐Micro Lett. 10: 69.

      16 16 Ma, Y., Wang, X., Jia, Y. et al. (2014). Chem. Rev. 114: 9987.

      17 17 (a) Zou, X., Dong, Y., Li, S. et al. (2018). Sol. Energy 169: 392. (b) Liu, J., Zhang, J., Wang, D. et al. (2019). ACS Sustainable Chem. Eng. 7: 12428. (c) Zhang, Z., Wang, S., Bao, M. et al. (2019). J. Colloid Interface Sci. 555: 342.

      18 18 (a) Ke, J., Zhao, C., Zhou, H. et al. (2019). Sustainable Mater.Technol. 19: e00088. (b) Zou, X., Yuan, C., Dong, Y. et al. (2020). Chem. Eng. J. 379: 122380.

      19 19 Inoue, T., Fujishima, A., Konishi, S., and Honda, K. (1979). Nature 277: 637.

      20 20 Tu, W., Zhou, Y., and Zou, Z. (2014). Adv. Mater. 26: 4607.

      21 21 Anpo, M., Yamashita, H., Ichihashi, Y., and Ehara, S. (1995). J. Electroanal. Chem. 396: 21.

      22 22 Anpo, M., Yamashita, H., Ichihashi, Y. et al. (1997). J. Phys. Chem. B 101: 2632.

      23 23 Ikeuea, K., Mukaia, H., Yamashitaa, H. et al. (2001). J. Synchrotron Radiat. 8: 640.

      24 24 Anpo, M. and Chiba, K. (1992). J. Mol. Catal. 74: 207.

      25 25 Maidan, R. and Willner, I. (1986). J. Am. Chem. Soc. 108: 8100.

      26 26 Saladin, F., Forss, L., and Kamber, I. (1995). J. Chem. Soc., Chem. Commun. 5: 533.

      27 27 Tasbihi, M., Fresno, F., Simon, U. et al. (2018). Appl. Catal., B 239: 68.

      28 28 Ran, J., Jaroniec, M., and Qiao, S.Z. (2018). Adv. Mater. 30: 1704649.

      29 29 Liu, Y., Zhou, S., Li, J. et al. (2015). Appl. Catal., B 168–169: 125.

      30 30 Yang, X., Wang, S., Yang, N. et al. (2019). Appl. Catal., B 259: 118088.

      31 31 Han, C., Lei, Y., Wang, B., and Wang, Y. (2018). ChemSusChem 11: 4237.

      32 32 Aurian‐Blajeni, B., Halmann, M., and Manassen, J. (1980). Sol. Energy 25: 165.

      33 33 Wu, J.C.S., Lin, H.M., and Lai, C.L. (2005). Appl. Catal., A 296: 194.

      34 34 Yahaya, A.H., Gondal, M.A., and Hameed, A. (2004). Chem. Phys. Lett. 400: 206.

      35 35 An, C., Wang, J., Jiang, W. et al. (2012). Nanoscale 4: 5646.

      36 36 Liu, S., Lu, J., Pu, Y., and Fan, H. (2019). J. CO2 Util. 33: 171.

      37 37 Liang, L., Lei, F., Gao, S. et al. (2015). Angew. Chem. Int. Ed. 54: 13971.

      38 38 AlOtaibi, B., Kong, X., Vanka, S. et al. (2016). ACS Energy Lett. 1: 246.

      39 39 Li, A., Wang, T., Li, C. et al. (2019). Angew. Chem. Int. Ed. 58: 3804.

      40 40 Yadav, R.K., Oh, G.H., Park, N.J. et al. (2014). J. Am. Chem. Soc. 136: 16728.

      41 41 Kuk, S.K., Singh, R.K., Nam, D.H. et al. (2017). Angew. Chem. Int. Ed. 56: 3827.

      42 42 Mora‐Hernandez, J.M., Huerta‐Flores, A.M., and Torres‐Martínez, L.M. (2018). J. CO2 Util. 27: 179.

      43 43 Ojha, N., Bajpai, A., and Kumar, S. (2019). Catal. Sci. Technol. 9: 4598.

      44 44 He, Z., Jiang, L., Han, J. et al. (2014). Asian J. Chem. 26: 4759.

      45 45 Garay‐Rodríguez, L.F., Torres‐Martínez, L.M., and Moctezuma, E. (2018). J. Photochem. Photobiol., A 361: 25.

      46 46 (a) Khenkin, A.M., Efremenko, I., Weiner, L. et al. (2010). Chem. Eur. J. 16: 1356. (b) Chen, D., Sahasrabudhe,