Barman, S., Sreejith, S.S., Garai, S. et al. (2019). ChemPhotoChem 3: 93.
48 48 Brunetti, A., Pomilla, F., Marcì, G. et al. (2019). Appl. Catal., B 255: 117779.
49 49 Kumar, D., Lee, S.B., Park, C.H., and Kim, C.S. (2018). Chem. Commun. 54: 1571.
50 50 Adekoya, D.O., Tahir, M., and Amin, N.A.S. (2017). J. CO2 Util. 18: 261.
51 51 Ohno, T., Murakami, N., Koyanagi, T., and Yang, Y. (2014). J. CO2 Util. 6: 17.
52 52 Matsuoka, S., Kohzuki, T., Pac, C. et al. (1992). J. Phys. Chem. 96: 4437.
53 53 Tamaki, Y., Morimoto, T., Koike, K., and Ishitani, O. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 15673.
54 54 Tamaki, Y., Koike, K., and Ishitani, O. (2015). Chem. Sci. 6: 7213.
55 55 (a) Suzuki, T.M., Tanaka, H., Morikawa, T. et al. (2011). Chem. Commun. 47: 8673. (b) Sato, S., Morikawa, T., Saeki, S. et al. (2010). Angew. Chem. Int. Ed. 49: 5101.
56 56 Tsounis, C., Kuriki, R., Shibata, K. et al. (2018). ACS Sustainable Chem. Eng. 6: 15333.
57 57 Kim, W., Seok, T., and Choi, W. (2012). Energy Environ. Sci. 5: 6066.
58 58 Kulandaivalu, T., Abdul Rashid, S., Sabli, N., and Tan, T. (2019). Diamond Relat. Mater. 91: 64.
59 59 (a) Seeharaj, P., Kongmun, P., Paiplod, P. et al. (2019). Ultrason. Sonochem. 58: 104657. (b) Dai, W., Xu, H., Yu, J. et al. (2015). Appl. Surf. Sci. 356: 173.
60 60 Liu, Y., Huang, B., Dai, Y. et al. (2009). Catal. Commun. 11: 210.
61 61 Mao, J., Peng, T., Zhang, X. et al. (2013). Catal. Sci. Technol. 3: 1253.
62 62 Pastrana‐Martínez, L.M., Silva, A.M.T., Fonseca, N.N.C. et al. (2016). Top. Catal. 59: 1279.
63 63 Fusco, C., Casiello, M., Catucci, L. et al. (2018). Materials 11: 307.
64 64 Park, H., Ou, H.H., Colussi, A.J., and Hoffmann, M.R. (2015). J. Phys. Chem. A 119: 4658.
65 65 (a) Kim, D., Kley, C.S., Li, Y., and Yang, P. (2017). Proc. Natl. Acad. Sci. U.S.A. 114: 10560. (b) Zhong, S., Yang, X., Cao, Z. et al. (2018). Chem. Commun. 54: 11324. (c) Calvinho, K.U.D., Laursen, A.B., Yap, K.M.K. et al. (2018). Energy Environ. Sci. 11: 2550.
66 66 (a) Iguchi, S., Teramura, K., Hosokawa, S., and Tanaka, T. (2016). Appl. Catal., A 521: 160. (b) Iguchi, S., Teramura, K., Hosokawa, S., and Tanaka, T. (2016). Catal. Sci. Technol. 6: 4978.
67 67 Yin, G., Nishikawa, M., Nosaka, Y. et al. (2015). ACS Nano 9: 2111.
68 68 Tahir, M., Tahir, B., Amin, N., and Zakaria, Z.Y. (2017). J. CO2 Util. 18: 250.
69 69 (a) Zou, X., Dong, Y., Li, S. et al. (2018). J. Taiwan Inst. Chem. Eng. 93: 158. (b) Yu, L.L., Qin, J.Z., Zhao, W.J. et al. (2020). Int. J. Photoenergy 2020: 1.
70 70 Li, Y., Ren, J., Ouyang, S. et al. (2019). Appl. Catal., B 259: 118027.
71 71 Iizuka, K., Wato, T., Miseki, Y. et al. (2011). J. Am. Chem. Soc. 133: 20863.
72 72 Teramura, K., Wang, Z., Hosokawa, S. et al. (2014). Chem. Eur. J. 20: 9906.
73 73 Ulagappan, N. and Frei, H. (2000). J. Phys. Chem. A 104: 7834.
74 74 Kim, W., McClure, B.A., Edri, E., and Frei, H. (2016). Chem. Soc. Rev. 45: 3221.
75 75 (a) Wang, Y., Liu, M., Chen, W. et al. (2019). J. Alloys Compd. 786: 149. (b) Huang, C., Guo, R., Pan, W. et al. (2018). J. CO2 Util. 26: 487. (c) Ke, J., Zhou, H., Liu, J. et al. (2019). J. Colloid Interface Sci. 555: 413.
76 76 Zhou, H., Wen, Z., Liu, J. et al. (2019). Appl. Catal., B 242: 76.
77 77 Arai, T., Sato, S., Kajino, T., and Morikawa, T. (2013). Energy Environ. Sci. 6: 1274.
78 78 (a) Bazzan, I., Volpe, A., Dolbecq, A. et al. (2017). Catal. Today 290: 39. (b) Song, F., More, R., Schilling, M. et al. (2017). J. Am. Chem. Soc. 139: 14198.
79 79 Helveg, S., Kisielowski, C.F., Jinschek, J.R. et al. (2015). Micron 68: 176.
80 80 Zhao, Y., Swierk, J.R., Megiatto, J.D. Jr., et al. (2012). Proc. Natl. Acad. Sci. U.S.A. 109: 15612.
81 81 Kim, W., Yuan, G., McClure, B.A., and Frei, H. (2014). J. Am. Chem. Soc. 136: 11034.
82 82 Fan, J., Cheng, L., Liu, Y. et al. (2019). J. Catal. 378: 164.
83 83 Yu, L., Ba, X., Qiu, M. et al. (2019). Nano Energy 60: 576.
84 84 (a) Zhang, Y., Wu, C., Jiang, H. et al. (2018). Adv. Mater. 30: 1707522. (b) Shrestha, S. and Dutta, P.K. (2018). ACS Omega 3: 11972.
85 85 Zhang, H., Guo, C., Ren, J. et al. (2019). Chem. Commun. 55: 14050.
86 86 Zhang, L., Yang, C., Xie, Z., and Wang, X. (2018). Appl. Catal., B 224: 886.
87 87 Paille, G., Gomez‐Mingot, M., Roch‐Marchal, C. et al. (2018). J. Am. Chem. Soc. 140: 3613.
88 88 Shah, W., Waseem, A., Nadeem, M.A., and Kögerler, P. (2018). Appl. Catal., A 567: 132.
3
Natural and Artificial Photosynthesis
Dimitrios A. Pantazis
Max‐Planck‐Institut für Kohlenforschung, Department of Molecular Theory and Spectroscopy, Kaiser‐Wilhelm‐Platz 1, 45470, Mülheim an der Ruhr, Germany
3.1 Introduction
Conversion of sunlight into storable chemicals is a central and urgent challenge for modern science and technology. Its implications are not simply technological and economical: the outcome of this scientific endeavor can have historical significance, shaping the future of society and civilization on a global scale. The dire consequences of climate destabilization effected by the mounting use of fossil fuels are already amply manifested in extreme events and record‐breaking average temperatures year after year. Political responses against the inexorably evolving climate crisis and international coordination so far fall short of even meeting conservative stated targets, for example, on CO2 emissions. It is hoped that successful developments on a global scale [1] in the science and technology of capturing solar energy and storing it in chemical bonds, that is, the production of solar fuels, will aid in counterbalancing the use of coal, oil, and gas, potentially placing limits to future consequences of climate change.
It is an often‐repeated statement that the energy contained in just one hour of sunlight reaching the earth would be sufficient to cover a year's worth of our current global energy use. Regardless of the numerical preciseness of this statement, it gives an idea of the vast potential of sunlight as a renewable energy source. Harnessing solar energy can take several different forms. Conversion of sunlight to electricity and heat is already achievable, and application of relevant technologies should be distributed and maximized as much as possible. However, this type of solar energy utilization does not and cannot alone substitute for the use of fossil fuels [2], which account for the vast majority of global energy consumption. That is why the conversion of sunlight into fuels represents the ultimate goal. In attempting to reach it, we wish to replicate with our own technical means a crucial biological process, the process of natural photosynthesis.
Photosynthetic organisms appeared very early in the history of life on our planet. They use the energy of sunlight to drive their metabolism, producing reduced compounds that can be afterward oxidized to release the stored energy. Of particular interest to us is oxygenic photosynthesis, which is believed to have emerged around 2.5 billion years ago and marked the use of water as electron donor, with dioxygen as a by‐product. Oxygenic photosynthetic organisms today are plants, algae, and cyanobacteria. They oxidize water and reduce CO2 to carbohydrates. The splitting of water into dioxygen and hydrogen equivalents was a crucial turning point in the evolution of life [3]. Oxygenic photosynthesis is essentially the only source of atmospheric O2 on our planet. Surplus of