Группа авторов

Genetic Disorders and the Fetus


Скачать книгу

villi with follow‐up amniocentesis. Prenat Diagn 2015; 35:1117.

      67 67. Kalousek DK, Dill FJ. Chromosomal mosaicism confined to the placenta in human conceptions. Science 1983; 221:665.

      68 68. Hahnemann JM, Vejerslev LO. European collaborative research on mosaicism in CVS (EUCROMIC) – fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving single autosomal trisomy. Am J Med Genet 1997; 70:179.

      69 69. Yong PJ, Barrett IJ, Kalousek DK, et al. Clinical aspects, prenatal diagnosis, and pathogenesis of trisomy 16 mosaicism. J Med Genet. 2003; 40:175.

      70 70. Benn P. Trisomy 16 and trisomy 16 mosaicism: a review. Am J Med Genet 1998; 79:121.

      71 71. Sparks TN, Thao K, Norton ME. Mosaic trisomy 16: what are the obstetric and long‐term childhood outcomes? Genet Med 2017; 19:1164.

      72 72. Taylor TH, Gitlin SA, Patrick JL, et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 2014; 20:571.

      73 73. Lau AW, Brown CJ, Peñaherrera M, et al. Skewed X‐chromosome inactivation is common in fetuses or newborns associated with confined placental mosaicism. Am J Hum Genet 1997; 61:1353.

      74 74. Hall AL, Drendel HM, Verbrugge JL, et al. Positive cell‐free fetal DNA testing for trisomy 13 reveals confined placental mosaicism. Genet Med 2013; 15:729.

      75 75. Mao J, Wang T, Wang B, et al. Confined placental origin of the circulating cell free fetal DNA revealed by a discordant non‐invasive prenatal test result in a trisomy 18 pregnancy. Clin Chim Acta 2014; 433:190.

      76 76. Van Opstal D, Srebniak MI, Polak J, et al. False negative NIPT results: risk figures for chromosomes 13, 18 and 21 based on chorionic villi results in 5967 cases and literature review. PLoS One 2016; 11:e0146794.

      77 77. Hartwig TS, Ambye L, Sørensen S, et al. Discordant non‐invasive prenatal testing (NIPT) – a systematic review. Prenat Diagn 2017; 37:527.

      78 78. Brubaker D, Liu Y, Wang J, et al. Finding lost genes in GWAS via integrative–omics analysis reveals novel sub‐networks associated with preterm birth. Hum Mol Genet 2016:ddw325.

      79 79. Jacob K, Robinson W, Lefebvre L. Beckwith–Wiedemann and Silver–Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet 2013; 84:326.

      80 80. Eggermann T, Begemann M, Spengler S, et al. Genetic and epigenetic findings in Silver‐Russell syndrome. Pediatr Endocrinol Rev 2010; 8:86.

      81 81. Azzi S, Sas TC, Koudou Y, et al. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post‐natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2014; 9:338.

      82 82. Liu Y, Murphy SK, Murtha AP, et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics 2012; 7:735.

      83 83. Lim AL, Ng S, Leow SC, et al. Epigenetic state and expression of imprinted genes in umbilical cord correlates with growth parameters in human pregnancy. J Med Genet 2012; 49:689.

      84 84. Cordeiro A, Neto AP, Carvalho F, et al. Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes. J Assist Reprod Genet 2014; 31:1361.

      85 85. Guo L, Choufani S, Ferreira J, et al. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev Biol 2008; 320:79.

      86 86. Koukoura O, Sifakis S, Zaravinos A, et al. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta 2011; 32:51.

      87 87. St‐Pierre J, Hivert M, Perron P, et al. IGF2 DNA methylation is a modulator of newborn's fetal growth and development. Epigenetics 2012; 7:1125.

      88 88. Petre G, Lorès P, Sartelet H, et al. Genomic duplication in the 19q13. 42 imprinted region identified as a new genetic cause of intrauterine growth restriction. Clin Genet 2018; 94:575.

      89 89. Lambertini L, Marsit CJ, Sharma P, et al. Imprinted gene expression in fetal growth and development. Placenta 2012; 33:480.

      90 90. Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Obstet Gynecol 2006; 195:40.

      91 91. Sibai B, Dekker G, Kupferminc M. Pre‐eclampsia. Lancet 2005; 365:785.

      92 92. Côté A, Firoz T, Mattman A, et al. The 24‐hour urine collection: gold standard or historical practice? Obstet Gynecol 2008; 199:625.e1.

      93 93. Magee LA, Pels A, Helewa M, et al. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Canada 2014; 36:416.

      94 94. Von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy 2003; 22:143.

      95 95. Raymond D, Peterson E. A critical review of early‐onset and late‐onset preeclampsia. Obstet Gynecol Surv 2011; 66:497.

      96 96. Benton SJ, Leavey K, Grynspan D, et al. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology. Obstet Gynecol 2018; 219:604e1.

      97 97. Leavey K, Wilson SL, Bainbridge SA, et al. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia. Clin Epigenet 2018; 10:28.

      98 98. Leavey K, Bainbridge SA, Cox BJ. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia. PloS One 2015; 10:e0116508.

      99 99. Cox B, Leavey K, Nosi U, et al. Placental transcriptome in development and pathology: expression, function, and methods of analysis. Obstet Gynecol 2015; 213:S138.

      100 100. Leung DN, Smith SC, To K, et al. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2001; 184:1249.

      101 101. Redman CG, Sargent I. Placental debris, oxidative stress and pre‐eclampsia. Placenta (Eastbourne) 2000; 21:597.

      102 102. Rolnik D, O'gorman N, Fiolna M, et al. Maternal plasma cell‐free DNA in the prediction of pre‐eclampsia. Ultrasound Obstet Gynecol 2015; 45:106.

      103 103. Taglauer E, Wilkins‐Haug L, Bianchi D. Review: cell‐free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2014; 35:S64.

      104 104. Demers S, Roberge S, Bujold E. Low‐dose aspirin for the prevention of adverse pregnancy outcomes in women with elevated alpha‐fetoprotein. J Mat Fetal Neonat Med 2015; 28:726.

      105 105. Bujold E, Roberge S, Nicolaides KH. Low‐dose aspirin for prevention of adverse outcomes related to abnormal placentation. Prenat Diagn 2014; 34:642.

      106 106. Grill S, Rusterholz C, Zanetti‐Dällenbach R, et al. Potential markers of preeclampsia–a review. Reprod Biol Endocrinol 2009; 7:70.

      107 107. Vatten LJ, Eskild A, Nilsen TI, et al. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Obstet Gynecol 2007; 196:239.e1.

      108 108. Hawfield A, Freedman BI. Pre‐eclampsia: the pivotal role of the placenta in its pathophysiology and markers for early detection. Ther Adv Cardiovasc Dis 2009; 3:65.

      109 109. Poon LC, Nicolaides KH. Early prediction of preeclampsia. Obstet Gynecol Int. 2014; 2014:297397.

      110 110. Hui D, Okun N, Murphy K, et al. Combinations of maternal serum markers to predict preeclampsia, small for gestational age, and stillbirth: a systematic review. J Obstet Gynaecol Can 2012; 34:142.

      111 111. Kuc S, Wortelboer EJ, van Rijn BB, et al. Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first‐trimester prediction of preeclampsia: a systematic review. Obstet Gynecol Surv. 2011; 66:225.

      112 112. Heydanus R, Defoort P, Dhont M. Pre‐eclampsia and trisomy 13. Eur J Obstet Gynecol Reprod Biol 1995; 60:201.

      113 113. Boyd P, Lindenbaum R, Redman C. Pre‐eclampsia