Группа авторов

Genetic Disorders and the Fetus


Скачать книгу

Zhang J, Christianson RE, Torfs CP. Fetal trisomy 21 and maternal preeclampsia. Epidemiology. 2004: 195.

      115 115. Dotters‐Katz SK, Humphrey WM, Senz KL, et al. Trisomy 13 and the risk of gestational hypertensive disorders: a population‐based study. J Matern Fetal Neonatal Med 2018; 31:1951.

      116 116. Pidoux G, Guibourdenche J, Frendo J, et al. Impact of trisomy 21 on human trophoblast behaviour and hormonal function. Placenta 2004; 25:S79.

      117 117. Frendo J, Guibourdenche J, Pidoux G, et al. Trophoblast production of a weakly bioactive human chorionic gonadotropin in trisomy 21‐affected pregnancy. J Clin Endocrinol Metab 2004; 89:727.

      118 118. Rizzo G, Capponi A, Cavicchioni O, et al. Placental vascularization measured by three‐dimensional power Doppler ultrasound at 11 to 13 6 weeks' gestation in normal and aneuploid fetuses. Ultrasound Obstet Gynecol 2007; 30:259.

      119 119. Moses E, Fitzpatrick E, Freed K, et al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre‐eclampsia on 2q22. MHR: Basic Sci Reprod Med 2006; 12:505.

      120 120. Roten LT, Johnson MP, Forsmo S, et al. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre‐eclampsia in a large Norwegian population‐based study (the HUNT study). Eur J Hum Genet 2009; 17:250.

      121 121. Oudejans CB, van Dijk M, Oosterkamp M, et al. Genetics of preeclampsia: paradigm shifts. Hum Genet 2007; 120:607.

      122 122. van Dijk M, Mulders J, Poutsma A, et al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37:514.

      123 123. Romanelli V, Belinchon A, Campos‐Barros A, et al. CDKN1C mutations in HELLP/preeclamptic mothers of Beckwith–Wiedemann syndrome (BWS) patients. Placenta 2009; 30:551.

      124 124. McGinnis R, Steinthorsdottir V, Williams NO, et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet 2017; 49:1255.

      125 125. Gray KJ, Saxena R, Karumanchi SA. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Obstet Gynecol 2018; 218:211.

      126 126. Fisher R, Hodges M. Genomic imprinting in gestational trophoblastic disease—a review. Placenta 2003; 24:S111.

      127 127. Lage JM, Mark SD, Roberts DJ, et al. A flow cytometric study of 137 fresh hydropic placentas: correlation between types of hydatidiform moles and nuclear DNA ploidy. Obstet Gynecol 1992; 79:403.

      128 128. Barton SC, Surani M, Norris M. Role of paternal and maternal genomes in mouse development. Nature 1984; 311:374.

      129 129. Surani M, Barton SC, Norris M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308:548.

      130 130. Abdalla EM, Hayward BE, Shamseddin A, et al. Recurrent hydatidiform mole: detection of two novel mutations in the NLRP7 gene in two Egyptian families. Eur J Obstet Gynecol Reprod Biol 2012; 164:211.

      131 131. Wang CM, Dixon PH, Decordova S, et al. Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine‐rich region. J Med Genet 2009; 46:569.

      132 132. Parry DA, Logan CV, Hayward BE, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 2011; 89:451.

      133 133. El‐Maarri O, Seoud M, Coullin P, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet 2003; 12:1405.

      134 134. Hayward BE, De Vos M, Talati N, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat 2009; 30:E629.

      135 135. Sanchez‐Delgado M, Martin‐Trujillo A, Tayama C, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal‐effect mutations reveals widespread placenta‐specific imprinting. PLoS Genet 2015; 11:e1005644.

      136 136. Redline RW, Hassold T, Zaragoza MV. Prevalence of the partial molar phenotype in triploidy of maternal and paternal origin. Hum Pathol 1998; 29:505.

      137 137. McFadden DE, Pantzar JT. Placental pathology of triploidy. Hum Pathol 1996; 27:1018.

      138 138. Kagan KO, Anderson JM, Anwandter G, et al. Screening for triploidy by the risk algorithms for trisomies 21, 18 and 13 at 11 weeks to 13 weeks and 6 days of gestation. Prenat Diagn 2008; 28:1209.

      139 139. McFadden DE, Hulait G, Lockitch G, et al. Maternal serum screening in triploidy. Prenat Diagn 2002; 22:1113.

      140 140. Barsoom MJ, Mcentaffer A, Fleming A, et al. Marked abnormal quadruple screen in a patient with severe preeclampsia at 20 weeks with a triploid fetus. J Matern Fetal Neonatal Med 2006; 19:443.

      141 141. Gibson B, Muir‐Padilla J, Champeaux A, et al. Mesenchymal dysplasia of the placenta. Placenta 2004; 25:671.

      142 142. Jauniaux E, Nicolaides K, Hustin J. Perinatal features associated with placental mesenchymal dysplasia. Placenta 1997; 18:701.

      143 143. Matsui H, Iitsuka Y, Yamazawa K, et al. Placental mesenchymal dysplasia initially diagnosed as partial mole. Pathol Int 2003; 53:810.

      144 144. Ohyama M, Kojyo T, Gotoda H, et al. Mesenchymal dysplasia of the placenta. Pathol Int 2000; 50:759.

      145 145. Paradinas F, Sebire N, Fisher R, et al. Pseudo‐partial moles: placental stem vessel hydrops and the association with Beckwith–Wiedemann syndrome and complete moles. Histopathology 2001; 39:447.

      146 146. Kaiser‐Rogers KA, McFadden DE, Livasy CA, et al. Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J Med Genet 2006; 43:187.

      147 147. Robinson WP, Lauzon JL, Innes AM, et al. Origin and outcome of pregnancies affected by androgenetic/biparental chimerism. Hum Reprod 2007; 22:1114.

      148 148. Surti U, Hill LM, Dunn J, et al. Twin pregnancy with a chimeric androgenetic and biparental placenta in one twin displaying placental mesenchymal dysplasia phenotype. Prenat Diagn 2005; 25:1048.

      149 149. Robinson W, Slee J, Smith N, et al. Placental mesenchymal dysplasia associated with fetal overgrowth and mosaic deletion of the maternal copy of 11p15. 5. Am J Med Genet A 2007; 143:1752.

      150 150. Gogiel M, Begemann M, Spengler S, et al. Genome‐wide paternal uniparental disomy mosaicism in a woman with Beckwith–Wiedemann syndrome and ovarian steroid cell tumour. Eur J Hum Genet 2013; 21:788.

      151 151. Ohtsuka Y, Higashimoto K, Sasaki K, et al. Autosomal recessive cystinuria caused by genome‐wide paternal uniparental isodisomy in a patient with Beckwith–Wiedemann syndrome. Clin Genet 2015; 88:261.

      152 152. Inbar‐Feigenberg M, Choufani S, Cytrynbaum C, et al. Mosaicism for genome‐wide paternal uniparental disomy with features of multiple imprinting disorders: diagnostic and management issues. Am J Med Genet A 2013; 161:13.

      153 153. Laberge JM, Patenaude Y, Desilets V, et al. Large hepatic mesenchymal hamartoma leading to mid‐trimester fetal demise. Fetal Diagn Ther 2005; 20:141.

      154 154. Reed RC, Beischel L, Schoof J, et al. Androgenetic/biparental mosaicism in an infant with hepatic mesenchymal hamartoma and placental mesenchymal dysplasia. Pediatr Dev Pathol 2008; 11:377.

      155 155. Lin J, Cole BL, Qin X, Zhang M, et al. Occult androgenetic‐biparental mosaicism and sporadic hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2011; 14:360.

      156 156. Kapur RP, Berry JE, Tsuchiya KD, et al. Activation of the Chromosome 19q microRNA cluster in sporadic and androgenetic‐biparental mosaicism–associated hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2014; 17:75.

      157 157. Bree AF, Siegfried E, Sotelo‐Avila C, et al. Infantile hemangiomas: speculation on placental trophoblastic origin. Arch Dermatol 2001; 137:573.

      158 158. Itinteang T, Tan ST, Guthrie S, et al. A placental chorionic villous mesenchymal core cellular origin for infantile haemangioma. J Clin Pathol 2011; 64:870.

      159 159.