Ian W. Hamley

Small-Angle Scattering


Скачать книгу

href="#ulink_c3743fcb-f7f6-5647-981e-df1f7535db5e">Eq. (1.8) leads to the following equations: [56]

      (1.86)upper I left-parenthesis q right-parenthesis equals StartFraction 2 pi left-parenthesis upper Delta rho right-parenthesis squared upper T Over q squared EndFraction tilde q Superscript negative 2 Baseline for discs slash layers

      For monodisperse spherical particles of radius R, the minima in the form factor are located at qR = 4.493, 7.725... [10]. For an isotropic system of long cylindrical rods (radius R), the form factor minima are located at qR = 3.83, 7.01… [10] and for flat particles (thickness T) at qT/2 = 3.14, 6.28… These values can be obtained from the minima in the corresponding Bessel or sine functions as in the equations in Section 1.7.3.

      It should be noted that the form factors and the position of the minima in them depend on products of q and an appropriate particle dimension; therefore, the form factors have the same appearance for different pairs of reciprocal units (i.e. calculations with q in Å−1 with dimensions in Å or q in nm−1 with dimensions in nm give the same result).

      (1.87)left pointing angle exp left-bracket minus i bold q period bold r right-bracket right pointing angle equals left pointing angle exp left-bracket minus italic i q left-parenthesis z cosine phi minus l sine phi cosine gamma right-parenthesis right-bracket right pointing angle

Schematic illustration of the inter-relationship between vectors q and r in cylindrical co-ordinates.

      For a uniform cylinder (radius R, length L) this leads to the expression [57]

      (1.88)upper I left-parenthesis q right-parenthesis equals left-parenthesis upper Delta rho right-parenthesis squared left pointing angle period right pointing angle left-parenthesis right-parenthesis separator integral integral equals equals z minus minus upper L 2 equals equals zL 2 integral integral equals equals l 0 equals equals lR integral integral equals equals gamma 0 equals equals gamma times times 2 pi of expexp left-bracket right-bracket minus minus times times iq left-parenthesis right-parenthesis minus minus times times z of coscos phi times times times l of sinsin phi of coscos gamma d gamma ldldz 2 period Subscript phi

      (1.89)equals left-parenthesis upper Delta rho right-parenthesis squared left pointing angle period right pointing angle left-parenthesis right-parenthesis separator times times integral integral equals equals z minus minus upper L 2 equals equals zL 2 of expexp left-bracket right-bracket minus minus times times iqz of coscos phi dz integral integral equals equals l 0 equals equals lR integral integral equals equals gamma 0 equals equals gamma times times 2 pi of expexp left-bracket right-bracket minus minus times times times iql of sinsin phi of coscos gamma d gamma ldl 2 period Subscript phi

      Performing the integral over z (using the same formula as in Eq. (1.12)) we have

      (1.90)upper I left-parenthesis q right-parenthesis equals left-parenthesis upper Delta rho right-parenthesis squared left pointing angle left-parenthesis StartFraction sine left-parenthesis one half italic q upper L cosine phi right-parenthesis Over one half italic q upper L cosine phi EndFraction integral Subscript l equals 0 Superscript l equals upper R Baseline integral Subscript gamma equals 0 Superscript gamma equals 2 pi Baseline exp left-bracket minus italic i q l sine phi cosine gamma right-bracket italic d gamma ldl right-parenthesis squared right pointing angle Subscript phi

      (1.91)upper I left-parenthesis q right-parenthesis equals left-parenthesis upper Delta rho right-parenthesis squared upper I Subscript upper L Baseline left-parenthesis q right-parenthesis upper I Subscript c Baseline left-parenthesis q right-parenthesis

      where

      (1.92)StartLayout 1st Row 1st Column upper I Subscript upper L Baseline left-parenthesis q right-parenthesis 2nd Column equals left pointing angle period right pointing angle left-parenthesis right-parenthesis of sinsin left-parenthesis right-parenthesis times times times 12 qL of coscos phi times times times 12 qL of coscos phi 2 period Subscript phi Baseline equals integral Subscript phi equals 0 Superscript phi equals pi Baseline left-parenthesis StartFraction sine left-parenthesis one half italic q upper L cosine phi right-parenthesis Over one half italic q upper L cosine phi EndFraction right-parenthesis squared sine phi normal d phi 2nd Row 1st Column Blank 2nd Column asymptotically-equals integral Subscript x equals 0 Superscript x equals infinity Baseline left-parenthesis StartFraction sine left-parenthesis one half italic q upper L x right-parenthesis Over one half italic q upper L x EndFraction right-parenthesis squared normal d x equals StartFraction upper L pi Over q EndFraction EndLayout

      The integral over ϕ extends to infinity to make use of the Dirichlet integral, this is valid when q ≥ 2π/L, since the integrand is negligibly small for x > 1 [7]. This leads to the factorization [5, 6]

      The cross‐section intensity is related to the distance distribution function of the cross‐section, γc(r),